test-cifar-10

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9675
  • Accuracy: 0.1471

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 10
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 12

Training results

Training Loss Epoch Step Accuracy Validation Loss
No log 1.0 398 0.1078 2.4878
2.6367 2.0 796 0.1225 2.2750
2.0748 3.0 1194 0.1471 2.1435
1.9035 4.0 1592 0.1225 2.0770
1.9035 5.0 1990 0.1422 2.0976
1.8217 6.0 2388 0.1618 1.9768
1.7998 7.0 2786 2.0803 0.1275
1.7268 8.0 3184 1.9141 0.1569
1.6826 9.0 3582 1.7059 0.2010
1.6826 10.0 3980 2.0650 0.1127
1.6642 11.0 4378 1.9643 0.1520
1.6267 12.0 4776 1.9675 0.1471

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
16
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nttwt1597/ViT_Blood_test_ckpt_3582

Finetuned
(1772)
this model