|
--- |
|
license: mit |
|
language: |
|
- en |
|
pipeline_tag: text-classification |
|
tags: |
|
- sentiment-analysis |
|
- text-classification |
|
- generic |
|
- sentiment-classification |
|
--- |
|
Usage: |
|
|
|
## Model |
|
|
|
Base version of e5-v2 finetunned on an annotated subset of C4 (Numind/C4_sentiment-analysis). This model provide generic embedding for sentiment analysis. Embeddings can be used out of the box or fine tune on specific datasets. |
|
|
|
|
|
## Usage |
|
|
|
Below is an example to encode text and get embedding. |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
|
|
model = AutoModel.from_pretrained("Numind/e5-base-SA") |
|
tokenizer = AutoTokenizer.from_pretrained("Numind/e5-base-SA") |
|
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') |
|
model.to(device) |
|
|
|
size = 256 |
|
text = "This movie is amazing" |
|
|
|
encoding = tokenizer( |
|
text, |
|
truncation=True, |
|
padding='max_length', |
|
max_length= size, |
|
) |
|
|
|
emb = model( |
|
torch.reshape(torch.tensor(encoding.input_ids),(1,len(encoding.input_ids))).to(device),output_hidden_states=True |
|
).hidden_states[-1].cpu().detach() |
|
|
|
embText = torch.mean(emb,axis = 1) |
|
|
|
``` |