MultiPLCoder-1b

1 billion parameter version of MultiPLCoder, a set of StarCoder-based models finetuned on the MultiPL-T dataset. These models are state-of-the-art at low-resource languages, such as: Lua, Racket, and OCaml.

Language Revision Index

This is the revision index for the best-performing models for their respective langauge.

Langauge Revision ID Epoch
Lua 7e96d931547e342ad0661cdd91236fe4ccf52545 3
Racket 2cdc541bee1db4da80c0b43384b0d6a0cacca5b2 5
OCaml e8a24f9e2149cbda8c3cca264a53c2b361b7a031 6

Usage

To utilize one of the models in this repository, you must first select a commit revision for that model from the table above. For example, to use the Lua model:

from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("nuprl/MultiPLCoder-1b")
lua_revision="7e96d931547e342ad0661cdd91236fe4ccf52545"
model = AutoModelForCausalLM.from_pretrained("nuprl/MultiPLCoder-1b", revision=lua_revision)

Note that the model's default configuration does not enable caching, therefore you must specify to use the cache on generation.

toks = tokenizer.encode("-- Hello World", return_tensors="pt")
out = model.generate(toks, use_cache=True,  do_sample=True, temperature=0.2, top_p=0.95, max_length=50)
print(tokenizer.decode(out[0], skip_special_tokens=True))
-- Hello World!
-- :param name: The name of the person to say hello to
-- :return: A greeting
local function say_hello(name)
  return "Hello ".. name
end
Downloads last month
207
Safetensors
Model size
1.14B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train nuprl/MultiPL-T-StarCoderBase_1b

Collection including nuprl/MultiPL-T-StarCoderBase_1b

Evaluation results