You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

LLaMA 1.9B Kazakh Instruct Model

This repository contains the LLaMA 1.9B model fine-tuned on a Kazakh language dataset for instruction-based tasks. The model is trained to provide helpful, relevant, and context-aware responses to various prompts in Kazakh. It is particularly effective in answering questions, providing explanations, and assisting in educational and professional contexts. This model comes with an integrated chat template that structures conversations for proper input formatting. The Tokenizer supports this feature, allowing for easier interaction by formatting messages before they are passed to the model.

The template follows this structure:

{%- if messages[0]['role'] == 'system' %}
    {%- set offset = 1 %}
{%- else %}
    {%- set offset = 0 %}
{%- endif %}
<|begin_of_text|>
{%- for message in messages %}
    {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n' + message['content'] | trim + '<|eot_id|>' }}
{%- endfor %}
{{- '<|start_header_id|>' + 'көмекші' + '<|end_header_id|>\n\n' }}

Model Details

  • Model Name: LLaMA 1.9B Kazakh Instruct
  • Model ID: nur-dev/llama-1.9B-kaz-instruct
  • Parameters: 1.94 billion
  • Architecture: Causal Language Model (LLaMA)
  • Tokenizer: LLaMA tokenizer
  • Language: Kazakh

Training Data

The model was fine-tuned on a dataset containing 22000 samples designed for instruction-based tasks. The dataset includes a diverse set of prompts and responses to help the model learn to handle a wide range of topics, from everyday queries to specialized questions.

How to Use

Using the Model Directly for Inference

Using the LlamaForCausalLM and AutoTokenizer classes to load a custom model, format a conversation, and generate a response using various generation parameters like top_k, top_p, and temperature.

from transformers import LlamaForCausalLM, AutoTokenizer
import torch

# Load the model and tokenizer
model_directory = "nur-dev/llama-1.9B-kaz-instruct"
model = LlamaForCausalLM.from_pretrained(model_directory)
tokenizer = AutoTokenizer.from_pretrained(model_directory)

# Set the model to evaluation mode and move to appropriate device
model.eval()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

# Example input in Kazakh

# Conversation history
conversation_history = [
    {"role": "system", "content": "Сіз сұрақтарға жауап беріп, ақпарат ұсынатын сенімді AI көмекшісісіз."},
    {"role": "пайдаланушы", "content": "Жасанды интеллект денсаулық сақтау саласына қандай өзгерістер енгізе алады?"}
]

# Format conversation using the chat template (custom method)
formatted_conversation = tokenizer.apply_chat_template(conversation_history, tokenize=False)

# Tokenize input
input_ids = tokenizer.encode(formatted_conversation, return_tensors="pt").to(device)

# Generate a response from the model
with torch.no_grad():
    output = model.generate(
        input_ids,
        max_length=1000,
        num_return_sequences=1,
        pad_token_id=tokenizer.eos_token_id,
        no_repeat_ngram_size=2,
        early_stopping=True,
        do_sample=True,
        top_k=10,
        top_p=0.5,
        eos_token_id=tokenizer.eos_token_id,
        temperature=1.3
    )

# Decode and print the model's response
response = tokenizer.decode(output[0], skip_special_tokens=False)
print(response)

Using the Pipeline for Text Generation

Using the pipeline API, which abstracts much of the setup, allowing you to generate responses with less boilerplate. The assistant responds in a “pirate” style to a user query.

from transformers import pipeline

# Initialize the text generation pipeline
pipe = pipeline("text-generation", model="nur-dev/llama-1.9B-kaz-instruct")

# Define the conversation messages
messages = [
      {"role": "system", "content": "Сіз сұрақтарға жауап беріп, ақпарат ұсынатын сенімді AI көмекшісісіз."},
      {"role": "пайдаланушы", "content": "Жасанды интеллект денсаулық сақтау саласына қандай өзгерістер енгізе алады?"}
  ]

response = pipe(messages, max_new_tokens=128)[0]['generated_text']

print(response)

@misc {nurgali_kadyrbek_2024, author = { {NURGALI Kadyrbek} }, title = { llama-1.9B-kaz-instruct (Revision 4059a4e) }, year = 2024, url = { https://huggingface.co/nur-dev/llama-1.9B-kaz-instruct }, doi = { 10.57967/hf/3114 }, publisher = { Hugging Face } }

Downloads last month
4
Safetensors
Model size
1.94B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nur-dev/llama-1.9B-kaz-instruct

Finetuned
(1)
this model