language:
- en
- ru
- de
- es
- fr
- ja
- it
- vi
- nl
- pl
- pt
- id
- fa
- ar
- el
- tr
- cs
- zh
- ro
- sv
- hu
- uk
- bg
- 'no'
- hi
- fi
- da
- sk
- ko
- hr
- ca
- he
- bn
- lt
- ta
- sr
- sl
- et
- lv
- ne
- mr
- ka
- ml
- mk
- ur
- sq
- kk
- te
- hy
- az
- is
- gl
- kn
library_name: nemo
tags:
- text generation
- pytorch
- causal-lm
license: cc-by-4.0
NVLLM 2B
Model Description
NVLLM-GPT 2B is a transformer-based language model. GPT refers to a class of transformer decoder-only models similar to GPT-2 and 3 while 2B refers to the total trainable parameter count (2 Billion) [1, 2].
This model was trained with NeMo Megatron.
Model Architecture improvements
- The model uses the SwiGLU activation function [4]
- Rotary positional embeddings (RoPE) [5]
- Maximum sequence length of 4,096 compared to 2,048 in https://huggingface.co/nvidia/nemo-megatron-gpt-20B.
- No dropout.
- No bias terms in all linear layers.
- United embedding and output layers.
Getting started
Note: You will need NVIDIA Ampere or Hopper GPUs to work with this model.
Step 1: Install NeMo and dependencies
You will need to install NVIDIA Apex and NeMo.
git clone https://github.com/ericharper/apex.git
cd apex
git checkout nm_v1.11.0
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" --global-option="--fast_layer_norm" --global-option="--distributed_adam" --global-option="--deprecated_fused_adam" ./
pip install nemo_toolkit['nlp']==1.11.0
Alternatively, you can use NeMo Megatron training docker container with all dependencies pre-installed.
Step 2: Launch eval server
Note. The example below launches a model variant with Tensor Parallelism (TP) of 1 and Pipeline Parallelism (PP) of 1 on 1 GPU.
git clone https://github.com/NVIDIA/NeMo.git
cd NeMo/examples/nlp/language_modeling
git checkout v1.11.0
python megatron_gpt_eval.py gpt_model_file=nemo_gpt2B.nemo server=True tensor_model_parallel_size=1 trainer.devices=1
Step 3: Send prompts to your model!
import json
import requests
port_num = 5555
headers = {"Content-Type": "application/json"}
def request_data(data):
resp = requests.put('http://localhost:{}/generate'.format(port_num),
data=json.dumps(data),
headers=headers)
sentences = resp.json()['sentences']
return sentences
data = {
"sentences": ["Tell me an interesting fact about space travel."]*1,
"tokens_to_generate": 50,
"temperature": 1.0,
"add_BOS": True,
"top_k": 0,
"top_p": 0.9,
"greedy": False,
"all_probs": False,
"repetition_penalty": 1.2,
"min_tokens_to_generate": 2,
}
sentences = request_data(data)
print(sentences)
Training Data
The model was trained on 1.1T tokens obtained from publicly available data sources. The dataset comprises 53 languages and code.
Evaluation results
Zero-shot performance. Evaluated using LM Evaluation Test Suite from AI21
ARC-Challenge | ARC-Easy | RACE-middle | Winogrande | RTE | BoolQA | HellaSwag | PiQA |
---|---|---|---|---|---|---|---|
0.3558 | 0.45300 | 0.3997 | 0.5801 | 0.556 | 0.5979 | 0.592 | 0.7437 |
Limitations
The model was trained on the data originally crawled from the Internet. This data contains toxic language and societal biases. Therefore, the model may amplify those biases and return toxic responses especially when prompted with toxic prompts.
References
[1] Improving Language Understanding by Generative Pre-Training
[2] Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
[4] GLU Variants Improve Transformer
[5] RoFormer: Enhanced Transformer with Rotary Position Embedding
Licence
License to use this model is covered by the CC-BY-4.0. By downloading the public and release version of the model, you accept the terms and conditions of the CC-BY-4.0 license.