|
--- |
|
license: cc-by-nc-4.0 |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
tags: |
|
- nvidia |
|
- NVLM |
|
- pytorch |
|
- multimodal |
|
- conversational |
|
--- |
|
|
|
|
|
## Model Details |
|
|
|
Today (September 17th, 2024), we introduce [NVLM 1.0](https://arxiv.org/abs/2409.11402), a family of frontier-class multimodal large language models (LLMs) that achieve state-of-the-art results on vision-language tasks, rivaling the leading proprietary models (e.g., GPT-4o) and open-access models (e.g., Llama 3-V 405B and InternVL 2). Remarkably, NVLM 1.0 shows improved text-only performance over its LLM backbone after multimodal training. |
|
|
|
In this repo, we are open-sourcing NVLM-1.0-D-72B (decoder-only architecture), the decoder-only model weights and code for the community. |
|
|
|
## Other Resources |
|
[Inference Code (HF)](https://huggingface.co/nvidia/NVLM-D-72B/tree/main)   [Training Code (Coming soon)]()   [Website](https://nvlm-project.github.io/)   [Paper](https://arxiv.org/abs/2409.11402) |
|
|
|
## Benchmark Results |
|
We train our model with legacy [Megatron-LM](https://github.com/NVIDIA/Megatron-LM/tree/main/megatron/legacy) and adapt the codebase to Huggingface for model hosting, reproducibility, and inference. |
|
We observe numerical differences between the Megatron and Huggingface codebases, which are within the expected range of variation. |
|
We provide the results from both the Huggingface codebase and the Megatron codebase for reproducibility and comparison with other models. |
|
|
|
Results (as of September 17th, 2024) in the multimodal benchmarks are as follows: |
|
|
|
| Benchmark | MMMU (val / test) | MathVista | OCRBench | AI2D | ChartQA | DocVQA | TextVQA | RealWorldQA | VQAv2 | |
|
|------------------------------|-------------------|-----------|----------|------|---------|--------|---------|-------------|-------| |
|
| NVLM-D 1.0 72B (Huggingface) | 58.7 / 54.9 | 65.2 | 852 | 94.2 | 86.0 | 92.6 | 82.6 | 69.5 | 85.4 | |
|
| NVLM-D 1.0 72B (Megatron) | 59.7 / 54.6 | 65.2 | 853 | 94.2 | 86.0 | 92.6 | 82.1 | 69.7 | 85.4 | |
|
| Llama 3.2 90B | 60.3 / - | 57.3 | - | 92.3 | 85.5 | 90.1 | - | - | 78.1 | |
|
| Llama 3-V 70B | 60.6 / - | - | - | 93.0 | 83.2 | 92.2 | 83.4 | - | 79.1 | |
|
| Llama 3-V 405B | 64.5 / - | - | - | 94.1 | 85.8 | 92.6 | 84.8 | - | 80.2 | |
|
| InternVL2-Llama3-76B | 55.2 / - | 65.5 | 839 | 94.8 | 88.4 | 94.1 | 84.4 | 72.2 | - | |
|
| GPT-4V | 56.8 / 55.7 | 49.9 | 645 | 78.2 | 78.5 | 88.4 | 78.0 | 61.4 | 77.2 | |
|
| GPT-4o | 69.1 / - | 63.8 | 736 | 94.2 | 85.7 | 92.8 | - | - | - | |
|
| Claude 3.5 Sonnet | 68.3 / - | 67.7 | 788 | 94.7 | 90.8 | 95.2 | - | - | - | |
|
| Gemini 1.5 Pro (Aug 2024) | 62.2 / - | 63.9 | 754 | 94.4 | 87.2 | 93.1 | 78.7 | 70.4 | 80.2 | |
|
|
|
|
|
|
|
## How to use |
|
|
|
When converting Megatron checkpoint to Huggingface, we adapt [InternVL codebase](https://huggingface.co/OpenGVLab/InternVL2-Llama3-76B) to support model loading and multi-GPU inference in HF. For training, please refer to [Megatron-LM (Coming soon)](). |
|
|
|
### Prepare the environment |
|
|
|
We provide a docker build file in the [Dockerfile](Dockerfile) for reproduction. |
|
|
|
The docker image is based on `nvcr.io/nvidia/pytorch:23.09-py3`. |
|
|
|
*Note: We observe that different transformer versions / CUDA versions / docker versions can lead to slight benchmark number differences. We recommend using the Dockerfile above for precise reproduction.* |
|
|
|
### Model loading |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModel |
|
|
|
path = "nvidia/NVLM-D-72B" |
|
model = AutoModel.from_pretrained( |
|
path, |
|
torch_dtype=torch.bfloat16, |
|
low_cpu_mem_usage=True, |
|
use_flash_attn=False, |
|
trust_remote_code=True).eval() |
|
``` |
|
|
|
### Multiple GPUs |
|
|
|
The model can be loaded on multiple GPUs as follows: |
|
|
|
```python |
|
import torch |
|
import math |
|
from transformers import AutoModel |
|
|
|
def split_model(): |
|
device_map = {} |
|
world_size = torch.cuda.device_count() |
|
num_layers = 80 |
|
# Since the first GPU will be used for ViT, treat it as half a GPU. |
|
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5)) |
|
num_layers_per_gpu = [num_layers_per_gpu] * world_size |
|
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5) |
|
layer_cnt = 0 |
|
for i, num_layer in enumerate(num_layers_per_gpu): |
|
for j in range(num_layer): |
|
device_map[f'language_model.model.layers.{layer_cnt}'] = i |
|
layer_cnt += 1 |
|
device_map['vision_model'] = 0 |
|
device_map['mlp1'] = 0 |
|
device_map['language_model.model.tok_embeddings'] = 0 |
|
device_map['language_model.model.embed_tokens'] = 0 |
|
device_map['language_model.output'] = 0 |
|
device_map['language_model.model.norm'] = 0 |
|
device_map['language_model.lm_head'] = 0 |
|
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0 |
|
|
|
return device_map |
|
|
|
path = "nvidia/NVLM-D-72B" |
|
device_map = split_model() |
|
model = AutoModel.from_pretrained( |
|
path, |
|
torch_dtype=torch.bfloat16, |
|
low_cpu_mem_usage=True, |
|
use_flash_attn=False, |
|
trust_remote_code=True, |
|
device_map=device_map).eval() |
|
``` |
|
|
|
|
|
### Inference |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModel |
|
import math |
|
from PIL import Image |
|
import torchvision.transforms as T |
|
from torchvision.transforms.functional import InterpolationMode |
|
|
|
|
|
def split_model(): |
|
device_map = {} |
|
world_size = torch.cuda.device_count() |
|
num_layers = 80 |
|
# Since the first GPU will be used for ViT, treat it as half a GPU. |
|
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5)) |
|
num_layers_per_gpu = [num_layers_per_gpu] * world_size |
|
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5) |
|
layer_cnt = 0 |
|
for i, num_layer in enumerate(num_layers_per_gpu): |
|
for j in range(num_layer): |
|
device_map[f'language_model.model.layers.{layer_cnt}'] = i |
|
layer_cnt += 1 |
|
device_map['vision_model'] = 0 |
|
device_map['mlp1'] = 0 |
|
device_map['language_model.model.tok_embeddings'] = 0 |
|
device_map['language_model.model.embed_tokens'] = 0 |
|
device_map['language_model.output'] = 0 |
|
device_map['language_model.model.norm'] = 0 |
|
device_map['language_model.lm_head'] = 0 |
|
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0 |
|
|
|
return device_map |
|
|
|
|
|
IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
IMAGENET_STD = (0.229, 0.224, 0.225) |
|
|
|
|
|
def build_transform(input_size): |
|
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD |
|
transform = T.Compose([ |
|
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), |
|
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), |
|
T.ToTensor(), |
|
T.Normalize(mean=MEAN, std=STD) |
|
]) |
|
return transform |
|
|
|
|
|
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): |
|
best_ratio_diff = float('inf') |
|
best_ratio = (1, 1) |
|
area = width * height |
|
for ratio in target_ratios: |
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
if ratio_diff < best_ratio_diff: |
|
best_ratio_diff = ratio_diff |
|
best_ratio = ratio |
|
elif ratio_diff == best_ratio_diff: |
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: |
|
best_ratio = ratio |
|
return best_ratio |
|
|
|
|
|
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): |
|
orig_width, orig_height = image.size |
|
aspect_ratio = orig_width / orig_height |
|
|
|
# calculate the existing image aspect ratio |
|
target_ratios = set( |
|
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if |
|
i * j <= max_num and i * j >= min_num) |
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
# find the closest aspect ratio to the target |
|
target_aspect_ratio = find_closest_aspect_ratio( |
|
aspect_ratio, target_ratios, orig_width, orig_height, image_size) |
|
|
|
# calculate the target width and height |
|
target_width = image_size * target_aspect_ratio[0] |
|
target_height = image_size * target_aspect_ratio[1] |
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
# resize the image |
|
resized_img = image.resize((target_width, target_height)) |
|
processed_images = [] |
|
for i in range(blocks): |
|
box = ( |
|
(i % (target_width // image_size)) * image_size, |
|
(i // (target_width // image_size)) * image_size, |
|
((i % (target_width // image_size)) + 1) * image_size, |
|
((i // (target_width // image_size)) + 1) * image_size |
|
) |
|
# split the image |
|
split_img = resized_img.crop(box) |
|
processed_images.append(split_img) |
|
assert len(processed_images) == blocks |
|
if use_thumbnail and len(processed_images) != 1: |
|
thumbnail_img = image.resize((image_size, image_size)) |
|
processed_images.append(thumbnail_img) |
|
return processed_images |
|
|
|
|
|
def load_image(image_file, input_size=448, max_num=12): |
|
image = Image.open(image_file).convert('RGB') |
|
transform = build_transform(input_size=input_size) |
|
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) |
|
pixel_values = [transform(image) for image in images] |
|
pixel_values = torch.stack(pixel_values) |
|
return pixel_values |
|
|
|
path = "nvidia/NVLM-D-72B" |
|
device_map = split_model() |
|
model = AutoModel.from_pretrained( |
|
path, |
|
torch_dtype=torch.bfloat16, |
|
low_cpu_mem_usage=True, |
|
use_flash_attn=False, |
|
trust_remote_code=True, |
|
device_map=device_map).eval() |
|
|
|
print(model) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False) |
|
generation_config = dict(max_new_tokens=1024, do_sample=False) |
|
|
|
# pure-text conversation |
|
question = 'Hello, who are you?' |
|
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True) |
|
print(f'User: {question}\nAssistant: {response}') |
|
|
|
# single-image single-round conversation |
|
pixel_values = load_image('path/to/your/example/image.jpg', max_num=6).to( |
|
torch.bfloat16) |
|
question = '<image>\nPlease describe the image shortly.' |
|
response = model.chat(tokenizer, pixel_values, question, generation_config) |
|
print(f'User: {question}\nAssistant: {response}') |
|
``` |
|
|
|
|
|
## Correspondence to |
|
Wenliang Dai* ([email protected]), Nayeon Lee* ([email protected]), Boxin Wang* ([email protected]), Zhuolin Yang* ([email protected]), Wei Ping* ([email protected]) |
|
|
|
*Equal contribution |
|
|
|
## Citation |
|
<pre> |
|
@article{nvlm2024, |
|
title={NVLM: Open Frontier-Class Multimodal LLMs}, |
|
author={Dai, Wenliang and Lee, Nayeon and Wang, Boxin and Yang, Zhuolin and Liu, Zihan and Barker, Jon and Rintamaki, Tuomas and Shoeybi, Mohammad and Catanzaro, Bryan and Ping, Wei}, |
|
journal={arXiv preprint}, |
|
year={2024}} |
|
</pre> |
|
|
|
|
|
## License |
|
The use of this model is governed by the [cc-by-nc-4.0](https://spdx.org/licenses/CC-BY-NC-4.0) |
|
|