|
--- |
|
license: gpl-3.0 |
|
--- |
|
|
|
# Testing model |
|
You can test the model on https://huggingface.co/spaces/nvomai/nvom-phi-3.5-mini-3b |
|
|
|
q4_k_m to more optimize! |
|
|
|
Phi 3.5 mini by Microsoft and Optimized by NVOM.ai |
|
|
|
Benchmarks: |
|
|
|
NVOM.ai AIBench SmartBench Specials (Based on NVOM.ai bench) |
|
NVOM Preview 4b 7.91 10.12 9.49 Speed, Smart, Quanatisation |
|
Phi 3.5 mini 5.31 4.95 6.31 Smart, Speed |
|
Gemma 2 9b (original) 3.76 2.11 2.93 Quanatisation, Smart |
|
|
|
|
|
|
|
1-4 - bad |
|
|
|
5-8 - normal |
|
|
|
8-12 - best |
|
|
|
|
|
### Loading the model locally |
|
After obtaining the Phi-3.5-mini-instruct model checkpoint, users can use this sample code for inference. |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
|
|
torch.random.manual_seed(0) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"nvomai/nvom-preview-4b", |
|
device_map="cuda", |
|
torch_dtype="auto", |
|
trust_remote_code=True, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct") |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are a helpful AI assistant."}, |
|
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"}, |
|
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."}, |
|
{"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"}, |
|
] |
|
|
|
pipe = pipeline( |
|
"text-generation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
) |
|
|
|
generation_args = { |
|
"max_new_tokens": 500, |
|
"return_full_text": False, |
|
"temperature": 0.0, |
|
"do_sample": False, |
|
} |
|
|
|
output = pipe(messages, **generation_args) |
|
print(output[0]['generated_text']) |
|
``` |
|
|
|
|