math_question_grade_detection_T5_12-17-24_bert

This model is a fine-tuned version of allenai/scibert_scivocab_uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4953
  • Accuracy: 0.8547
  • Precision: 0.8561
  • Recall: 0.8547
  • F1: 0.8550

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1500

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 0.1366 50 1.7038 0.3528 0.3718 0.3528 0.3113
No log 0.2732 100 1.2605 0.4958 0.5148 0.4958 0.4709
No log 0.4098 150 1.0502 0.5688 0.6510 0.5688 0.5465
No log 0.5464 200 0.9026 0.6441 0.6991 0.6441 0.6399
No log 0.6831 250 0.9158 0.6418 0.6649 0.6418 0.6177
No log 0.8197 300 0.8312 0.6956 0.7294 0.6956 0.6925
No log 0.9563 350 0.7025 0.7194 0.7175 0.7194 0.7124
No log 1.0929 400 0.7299 0.7248 0.7462 0.7248 0.7247
No log 1.2295 450 0.7050 0.7356 0.7467 0.7356 0.7354
1.0321 1.3661 500 0.6515 0.7479 0.7642 0.7479 0.7458
1.0321 1.5027 550 0.6121 0.7709 0.7759 0.7709 0.7706
1.0321 1.6393 600 0.6158 0.7648 0.7736 0.7648 0.7641
1.0321 1.7760 650 0.5397 0.7848 0.7895 0.7848 0.7852
1.0321 1.9126 700 0.5654 0.7925 0.8017 0.7925 0.7897
1.0321 2.0492 750 0.5194 0.8094 0.8173 0.8094 0.8115
1.0321 2.1858 800 0.5017 0.8155 0.8159 0.8155 0.8154
1.0321 2.3224 850 0.5459 0.8032 0.8207 0.8032 0.8047
1.0321 2.4590 900 0.5172 0.8209 0.8228 0.8209 0.8204
1.0321 2.5956 950 0.5433 0.8094 0.8103 0.8094 0.8067
0.4212 2.7322 1000 0.5114 0.8240 0.8301 0.8240 0.8250
0.4212 2.8689 1050 0.5154 0.8332 0.8406 0.8332 0.8342
0.4212 3.0055 1100 0.4721 0.8370 0.8372 0.8370 0.8364
0.4212 3.1421 1150 0.5013 0.8455 0.8486 0.8455 0.8452
0.4212 3.2787 1200 0.4903 0.8486 0.8511 0.8486 0.8491
0.4212 3.4153 1250 0.5175 0.8509 0.8532 0.8509 0.8508
0.4212 3.5519 1300 0.5091 0.8501 0.8511 0.8501 0.8499
0.4212 3.6885 1350 0.5260 0.8509 0.8553 0.8509 0.8518
0.4212 3.8251 1400 0.5077 0.8555 0.8557 0.8555 0.8549
0.4212 3.9617 1450 0.4965 0.8532 0.8551 0.8532 0.8536
0.1309 4.0984 1500 0.4953 0.8547 0.8561 0.8547 0.8550

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
8
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for nzm97/math_question_grade_detection_T5_12-17-24_bert

Finetuned
(71)
this model