math_question_grade_detection_T5_12-17-24_bert
This model is a fine-tuned version of allenai/scibert_scivocab_uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4953
- Accuracy: 0.8547
- Precision: 0.8561
- Recall: 0.8547
- F1: 0.8550
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1500
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 0.1366 | 50 | 1.7038 | 0.3528 | 0.3718 | 0.3528 | 0.3113 |
No log | 0.2732 | 100 | 1.2605 | 0.4958 | 0.5148 | 0.4958 | 0.4709 |
No log | 0.4098 | 150 | 1.0502 | 0.5688 | 0.6510 | 0.5688 | 0.5465 |
No log | 0.5464 | 200 | 0.9026 | 0.6441 | 0.6991 | 0.6441 | 0.6399 |
No log | 0.6831 | 250 | 0.9158 | 0.6418 | 0.6649 | 0.6418 | 0.6177 |
No log | 0.8197 | 300 | 0.8312 | 0.6956 | 0.7294 | 0.6956 | 0.6925 |
No log | 0.9563 | 350 | 0.7025 | 0.7194 | 0.7175 | 0.7194 | 0.7124 |
No log | 1.0929 | 400 | 0.7299 | 0.7248 | 0.7462 | 0.7248 | 0.7247 |
No log | 1.2295 | 450 | 0.7050 | 0.7356 | 0.7467 | 0.7356 | 0.7354 |
1.0321 | 1.3661 | 500 | 0.6515 | 0.7479 | 0.7642 | 0.7479 | 0.7458 |
1.0321 | 1.5027 | 550 | 0.6121 | 0.7709 | 0.7759 | 0.7709 | 0.7706 |
1.0321 | 1.6393 | 600 | 0.6158 | 0.7648 | 0.7736 | 0.7648 | 0.7641 |
1.0321 | 1.7760 | 650 | 0.5397 | 0.7848 | 0.7895 | 0.7848 | 0.7852 |
1.0321 | 1.9126 | 700 | 0.5654 | 0.7925 | 0.8017 | 0.7925 | 0.7897 |
1.0321 | 2.0492 | 750 | 0.5194 | 0.8094 | 0.8173 | 0.8094 | 0.8115 |
1.0321 | 2.1858 | 800 | 0.5017 | 0.8155 | 0.8159 | 0.8155 | 0.8154 |
1.0321 | 2.3224 | 850 | 0.5459 | 0.8032 | 0.8207 | 0.8032 | 0.8047 |
1.0321 | 2.4590 | 900 | 0.5172 | 0.8209 | 0.8228 | 0.8209 | 0.8204 |
1.0321 | 2.5956 | 950 | 0.5433 | 0.8094 | 0.8103 | 0.8094 | 0.8067 |
0.4212 | 2.7322 | 1000 | 0.5114 | 0.8240 | 0.8301 | 0.8240 | 0.8250 |
0.4212 | 2.8689 | 1050 | 0.5154 | 0.8332 | 0.8406 | 0.8332 | 0.8342 |
0.4212 | 3.0055 | 1100 | 0.4721 | 0.8370 | 0.8372 | 0.8370 | 0.8364 |
0.4212 | 3.1421 | 1150 | 0.5013 | 0.8455 | 0.8486 | 0.8455 | 0.8452 |
0.4212 | 3.2787 | 1200 | 0.4903 | 0.8486 | 0.8511 | 0.8486 | 0.8491 |
0.4212 | 3.4153 | 1250 | 0.5175 | 0.8509 | 0.8532 | 0.8509 | 0.8508 |
0.4212 | 3.5519 | 1300 | 0.5091 | 0.8501 | 0.8511 | 0.8501 | 0.8499 |
0.4212 | 3.6885 | 1350 | 0.5260 | 0.8509 | 0.8553 | 0.8509 | 0.8518 |
0.4212 | 3.8251 | 1400 | 0.5077 | 0.8555 | 0.8557 | 0.8555 | 0.8549 |
0.4212 | 3.9617 | 1450 | 0.4965 | 0.8532 | 0.8551 | 0.8532 | 0.8536 |
0.1309 | 4.0984 | 1500 | 0.4953 | 0.8547 | 0.8561 | 0.8547 | 0.8550 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.4.0
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for nzm97/math_question_grade_detection_T5_12-17-24_bert
Base model
allenai/scibert_scivocab_uncased