wav2vec2-large-xls-r-300m-tr-colab

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5288
  • Wer: 0.3953

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
6.1396 0.41 400 1.6561 0.9954
0.8075 0.82 800 0.7072 0.7451
0.5006 1.23 1200 0.5985 0.6364
0.4299 1.65 1600 0.5317 0.5837
0.4067 2.06 2000 0.5414 0.5810
0.3401 2.47 2400 0.5073 0.5575
0.3227 2.88 2800 0.4859 0.5252
0.2943 3.29 3200 0.5026 0.5230
0.2842 3.7 3600 0.5288 0.5414
0.2799 4.12 4000 0.5075 0.5207
0.2595 4.53 4400 0.4868 0.5083
0.2595 4.94 4800 0.4971 0.5084
0.2408 5.35 5200 0.5484 0.5214
0.234 5.76 5600 0.5050 0.5274
0.2239 6.17 6000 0.4970 0.4930
0.2152 6.58 6400 0.4761 0.4911
0.2199 7.0 6800 0.4871 0.4889
0.1998 7.41 7200 0.5132 0.4866
0.1924 7.82 7600 0.5250 0.5082
0.1972 8.23 8000 0.4799 0.4793
0.1868 8.64 8400 0.4827 0.4713
0.1853 9.05 8800 0.5079 0.4828
0.1775 9.47 9200 0.5172 0.4923
0.1808 9.88 9600 0.4908 0.4903
0.1663 10.29 10000 0.5111 0.4750
0.1614 10.7 10400 0.5058 0.4710
0.1631 11.11 10800 0.5221 0.4695
0.1541 11.52 11200 0.4975 0.4712
0.1552 11.93 11600 0.4975 0.4734
0.1433 12.35 12000 0.5132 0.4637
0.1464 12.76 12400 0.5267 0.4787
0.1449 13.17 12800 0.4908 0.4548
0.1368 13.58 13200 0.4947 0.4632
0.1392 13.99 13600 0.5301 0.4617
0.1244 14.4 14000 0.5264 0.4611
0.1296 14.81 14400 0.4925 0.4598
0.1254 15.23 14800 0.4840 0.4447
0.12 15.64 15200 0.4828 0.4464
0.1181 16.05 15600 0.5159 0.4893
0.1124 16.46 16000 0.5209 0.4608
0.1154 16.87 16400 0.5097 0.4517
0.1074 17.28 16800 0.5215 0.4383
0.1038 17.7 17200 0.5044 0.4348
0.1073 18.11 17600 0.5017 0.4410
0.0996 18.52 18000 0.5106 0.4445
0.0982 18.93 18400 0.4867 0.4399
0.0927 19.34 18800 0.5314 0.4412
0.0918 19.75 19200 0.4925 0.4268
0.0881 20.16 19600 0.5249 0.4344
0.0856 20.58 20000 0.4953 0.4309
0.0845 20.99 20400 0.5042 0.4257
0.0823 21.4 20800 0.5149 0.4266
0.0817 21.81 21200 0.5095 0.4187
0.0719 22.22 21600 0.5257 0.4249
0.0773 22.63 22000 0.5090 0.4097
0.0724 23.05 22400 0.5340 0.4209
0.0692 23.46 22800 0.5279 0.4148
0.0695 23.87 23200 0.5224 0.4082
0.0681 24.28 23600 0.5344 0.4117
0.0625 24.69 24000 0.5352 0.4040
0.0626 25.1 24400 0.5410 0.4134
0.0599 25.51 24800 0.5344 0.4142
0.0639 25.93 25200 0.5293 0.4020
0.0559 26.34 25600 0.5449 0.4100
0.0581 26.75 26000 0.5245 0.4044
0.0544 27.16 26400 0.5377 0.4034
0.0504 27.57 26800 0.5354 0.4038
0.0521 27.98 27200 0.5295 0.4012
0.0495 28.4 27600 0.5481 0.4014
0.0493 28.81 28000 0.5387 0.3987
0.0512 29.22 28400 0.5311 0.3994
0.049 29.63 28800 0.5288 0.3953

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
5
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for odelz/wav2vec2-large-xls-r-300m-tr-colab

Finetuned
(532)
this model

Evaluation results