Oscar Chen's picture
6 2

Oscar Chen

ogchen
·

AI & ML interests

None yet

Recent Activity

Organizations

None yet

ogchen's activity

upvoted 2 articles 6 days ago
view article
Article

Build awesome datasets for video generation

24
view article
Article

From Chunks to Blocks: Accelerating Uploads and Downloads on the Hub

47
reacted to Kseniase's post with 🔥 8 days ago
view post
Post
7581
8 New Types of RAG

RAG techniques continuously evolve to enhance LLM response accuracy by retrieving relevant external data during generation. To keep up with current AI trends, new RAG types incorporate deep step-by-step reasoning, tree search, citations, multimodality and other effective techniques.

Here's a list of 8 latest RAG advancements:

1. DeepRAG -> DeepRAG: Thinking to Retrieval Step by Step for Large Language Models (2502.01142)
Models retrieval-augmented reasoning as a Markov Decision Process, enabling strategic retrieval. It dynamically decides when to retrieve external knowledge and when rely on parametric reasoning.

2. RealRAG -> RealRAG: Retrieval-augmented Realistic Image Generation via Self-reflective Contrastive Learning (2502.00848)
Enhances  novel object generation by retrieving real-world images and using self-reflective contrastive learning to fill knowledge gap, improve realism and reduce distortions.

3. Chain-of-Retrieval Augmented Generation (CoRAG) -> Chain-of-Retrieval Augmented Generation (2501.14342)
Retrieves information step-by-step and adjusts it, also deciding how much compute power to use at test time. If needed it reformulates queries.

4. VideoRAG -> VideoRAG: Retrieval-Augmented Generation over Video Corpus (2501.05874)
Enables unlimited-length video processing, using dual-channel architecture that integrates graph-based textual grounding and multi-modal context encoding.

5. CFT-RAG ->  CFT-RAG: An Entity Tree Based Retrieval Augmented Generation Algorithm With Cuckoo Filter (2501.15098)
A tree-RAG acceleration method uses an improved Cuckoo Filter to optimize entity localization, enabling faster retrieval.

6. Contextualized Graph RAG (CG-RAG) -> CG-RAG: Research Question Answering by Citation Graph Retrieval-Augmented LLMs (2501.15067)
Uses Lexical-Semantic Graph Retrieval (LeSeGR) to integrate sparse and dense signals within graph structure and capture citation relationships

7. GFM-RAG -> GFM-RAG: Graph Foundation Model for Retrieval Augmented Generation (2502.01113)
A graph foundation model that uses a graph neural network to refine query-knowledge connections

8. URAG -> URAG: Implementing a Unified Hybrid RAG for Precise Answers in University Admission Chatbots -- A Case Study at HCMUT (2501.16276)
A hybrid system combining rule-based and RAG methods to improve lightweight LLMs for educational chatbots
  • 1 reply
·
reacted to hexgrad's post with 👍 12 days ago
view post
Post
5537
I wrote an article about G2P: https://hf.co/blog/hexgrad/g2p

G2P is an underrated piece of small TTS models, like offensive linemen who do a bunch of work and get no credit.

Instead of relying on explicit G2P, larger speech models implicitly learn this task by eating many thousands of hours of audio data. They often use a 500M+ parameter LLM at the front to predict latent audio tokens over a learned codebook, then decode these tokens into audio.

Kokoro instead relies on G2P preprocessing, is 82M parameters, and thus needs less audio to learn. Because of this, we can cherrypick high fidelity audio for training data, and deliver solid speech for those voices. In turn, this excellent audio quality & lack of background noise helps explain why Kokoro is very competitive in single-voice TTS Arenas.
upvoted 2 articles 13 days ago
view article
Article

Train 400x faster Static Embedding Models with Sentence Transformers

145
view article
Article

Rearchitecting Hugging Face Uploads and Downloads

43
updated a collection 6 months ago