oliverguhr's picture
citation added
97adfa8
|
raw
history blame
3.53 kB
---
language:
- nl
tags:
- punctuation prediction
- punctuation
datasets: wmt/europarl
license: mit
widget:
- text: "hervatting van de zitting ik verklaar de zitting van het europees parlement die op vrijdag 17 december werd onderbroken te zijn hervat"
example_title: "Euro Parl"
metrics:
- f1
---
This model predicts the punctuation of Dutch texts. We developed it to restore the punctuation of transcribed spoken language.
This model was trained on the [Europarl Dataset](https://huggingface.co/datasets/wmt/europarl).
The model restores the following punctuation markers: **"." "," "?" "-" ":"**
## Sample Code
We provide a simple python package that allows you to process text of any length.
## Install
To get started install the package from [pypi](https://pypi.org/project/deepmultilingualpunctuation/):
```bash
pip install deepmultilingualpunctuation
```
### Restore Punctuation
```python
from deepmultilingualpunctuation import PunctuationModel
model = PunctuationModel(model="oliverguhr/fullstop-dutch-punctuation-prediction")
text = "hervatting van de zitting ik verklaar de zitting van het europees parlement die op vrijdag 17 december werd onderbroken te zijn hervat"
result = model.restore_punctuation(text)
print(result)
```
**output**
> hervatting van de zitting ik verklaar de zitting van het europees parlement, die op vrijdag 17 december werd onderbroken, te zijn hervat.
### Predict Labels
```python
from deepmultilingualpunctuation import PunctuationModel
model = PunctuationModel(model="oliverguhr/fullstop-dutch-punctuation-prediction")
text = "hervatting van de zitting ik verklaar de zitting van het europees parlement die op vrijdag 17 december werd onderbroken te zijn hervat"
clean_text = model.preprocess(text)
labled_words = model.predict(clean_text)
print(labled_words)
```
**output**
> [['hervatting', '0', 0.9999777], ['van', '0', 0.99998415], ['de', '0', 0.999987], ['zitting', '0', 0.9992779], ['ik', '0', 0.9999889], ['verklaar', '0', 0.99998295], ['de', '0', 0.99998856], ['zitting', '0', 0.9999895], ['van', '0', 0.9999902], ['het', '0', 0.999992], ['europees', '0', 0.9999924], ['parlement', ',', 0.9915131], ['die', '0', 0.99997807], ['op', '0', 0.9999882], ['vrijdag', '0', 0.9999746], ['17', '0', 0.99998784], ['december', '0', 0.99997866], ['werd', '0', 0.9999888], ['onderbroken', ',', 0.99287957], ['te', '0', 0.9999864], ['zijn', '0', 0.99998176], ['hervat', '.', 0.99762934]]
## Results
The performance differs for the single punctuation markers as hyphens and colons, in many cases, are optional and can be substituted by either a comma or a full stop. The model achieves the following F1 scores:
| Label | Dutch |
| ------------- | -------- |
| 0 | 0.993588 |
| . | 0.961450 |
| ? | 0.848506 |
| , | 0.810883 |
| : | 0.655212 |
| - | 0.461591 |
| macro average | 0.788538 |
| micro average | 0.983492 |
## How to cite us
```
@misc{https://doi.org/10.48550/arxiv.2301.03319,
doi = {10.48550/ARXIV.2301.03319},
url = {https://arxiv.org/abs/2301.03319},
author = {Vandeghinste, Vincent and Guhr, Oliver},
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences, I.2.7},
title = {FullStop:Punctuation and Segmentation Prediction for Dutch with Transformers},
publisher = {arXiv},
year = {2023},
copyright = {Creative Commons Attribution Share Alike 4.0 International}
}
```