🚀 Arabic-Retrieval-v1.0

This is a high-performance Arabic information retrieval built using the robust sentence-transformers framework, it delivers state-of-the-art performance and is tailored to the richness and complexity of the Arabic language.

🔑 Key Features

  • 🔥 Outstanding Performance: Matches the accuracy of top-tier multilingual models like e5-multilingual-large. See evaluation
  • 💡 Arabic-Focused: Designed specifically for the nuances and dialects of Arabic, ensuring more accurate and context-aware results.
  • 📉 Lightweight Efficiency: Requires 25%-50% less memory, making it ideal for environments with limited resources or edge deployments.

🌍 Why This Model?

Multilingual models are powerful, but they’re often bulky and not optimized for specific languages. This model bridges that gap, offering Arabic-native capabilities without sacrificing performance or efficiency. Whether you’re working on search engines, chatbots, or large-scale NLP pipelines, this model provides a fast, accurate, and resource-efficient solution.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference. It is important to add the prefixes <query>: and <passage>: to your queries and passages while retrieving in the folllowing way:

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("omarelshehy/Arabic-Retrieval-v1.0")

# Query 
query = "<query>: كيف يمكن للذكاء الاصطناعي تحسين طرق التدريس التقليدية؟"

# Passages
passages = [
    "<passage>: طرق التدريس التقليدية تستفيد من الذكاء الاصطناعي عبر تحسين عملية المتابعة وتخصيص التجربة التعليمية. يقوم الذكاء الاصطناعي بتحليل بيانات الطلاب وتقديم توصيات فعالة للمعلمين حول طرق التدريس الأفضل.",
    "<passage>: تطوير التعليم الشخصي يعتمد بشكل كبير على الذكاء الاصطناعي، الذي يقوم بمتابعة تقدم الطلاب بشكل فردي. يقدم الذكاء الاصطناعي حلولاً تعليمية مخصصة لكل طالب بناءً على مستواه وأدائه.",
    "<passage>: الدقة في تقييم الطلاب تتزايد بفضل الذكاء الاصطناعي الذي يقارن النتائج مع معايير متقدمة. بالرغم من التحديات التقليدية، الذكاء الاصطناعي يوفر أدوات تحليل تتيح تقييماً أدق لأداء الطلاب."
]

# Encode query and passages 
embeddings_query = model.encode(queries)
embeddings_passages = model.encode(passages)

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings_query, embeddings_passages)

# Get best matching passage to query
best_match = passages[similarities.argmax().item()]
print(f"Best matching passage is {best_match}")

Evaluation

This model has been ealuated using 3 different datasets and the NDCG@10 metric

model 1 2 3
Arabic-Retrieval-v1.0 0.875 0.72 0.679
intfloat/multilingual-e5-large 0.89 0.719 0.698
intfloat/multilingual-e5-base 0.87 0.69 0.686

Citation

BibTeX

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
209
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for omarelshehy/Arabic-Retrieval-v1.0

Finetuned
(4205)
this model

Collection including omarelshehy/Arabic-Retrieval-v1.0

Evaluation results