|
--- |
|
base_model: FacebookAI/xlm-roberta-large |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- mteb |
|
- bilingual |
|
model-index: |
|
- name: omarelshehy/arabic-english-sts-matryoshka |
|
results: |
|
- dataset: |
|
config: en-en |
|
name: MTEB STS17 (en-en) |
|
revision: faeb762787bd10488a50c8b5be4a3b82e411949c |
|
split: test |
|
type: mteb/sts17-crosslingual-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 87.17053120821998 |
|
- type: cosine_spearman |
|
value: 87.05959159411456 |
|
- type: euclidean_pearson |
|
value: 87.63706739480517 |
|
- type: euclidean_spearman |
|
value: 87.7675347222274 |
|
- type: main_score |
|
value: 87.05959159411456 |
|
- type: manhattan_pearson |
|
value: 87.7006832512623 |
|
- type: manhattan_spearman |
|
value: 87.80128473941168 |
|
- type: pearson |
|
value: 87.17053012311975 |
|
- type: spearman |
|
value: 87.05959159411456 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: ar-ar |
|
name: MTEB STS17 (ar-ar) |
|
revision: faeb762787bd10488a50c8b5be4a3b82e411949c |
|
split: test |
|
type: mteb/sts17-crosslingual-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 82.22889478671283 |
|
- type: cosine_spearman |
|
value: 83.0533648934447 |
|
- type: euclidean_pearson |
|
value: 81.15891941165452 |
|
- type: euclidean_spearman |
|
value: 82.14034597386936 |
|
- type: main_score |
|
value: 83.0533648934447 |
|
- type: manhattan_pearson |
|
value: 81.17463976232014 |
|
- type: manhattan_spearman |
|
value: 82.09804987736345 |
|
- type: pearson |
|
value: 82.22889389569819 |
|
- type: spearman |
|
value: 83.0529662284269 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: en-ar |
|
name: MTEB STS17 (en-ar) |
|
revision: faeb762787bd10488a50c8b5be4a3b82e411949c |
|
split: test |
|
type: mteb/sts17-crosslingual-sts |
|
metrics: |
|
- type: cosine_pearson |
|
value: 79.79480510851795 |
|
- type: cosine_spearman |
|
value: 79.67609346073252 |
|
- type: euclidean_pearson |
|
value: 81.64087935350051 |
|
- type: euclidean_spearman |
|
value: 80.52588414802709 |
|
- type: main_score |
|
value: 79.67609346073252 |
|
- type: manhattan_pearson |
|
value: 81.57042957417305 |
|
- type: manhattan_spearman |
|
value: 80.44331526051143 |
|
- type: pearson |
|
value: 79.79480418294698 |
|
- type: spearman |
|
value: 79.67609346073252 |
|
task: |
|
type: STS |
|
language: |
|
- ar |
|
- en |
|
--- |
|
|
|
# SentenceTransformer based on FacebookAI/xlm-roberta-large |
|
|
|
This is a **Bilingual** (Arabic-English) [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for **semantic textual similarity, semantic search, paraphrase mining, text classification, clustering**, and more. |
|
|
|
The model handles both languages separately 🌐, but also **interchangeably**, which unlocks flexible applications for developers and researchers who want to further build on Arabic models! 💡 |
|
|
|
📊 Metrics from MTEB are promising, but don't just rely on them — test the model yourself and see if it fits your needs! ✅ |
|
|
|
## Matryoshka Embeddings 🪆 |
|
|
|
This model supports Matryoshka embeddings, allowing you to truncate embeddings into smaller sizes to optimize performance and memory usage, based on your task requirements. Available truncation sizes include: **1024, 768, 512, 256, 128, and 64** |
|
|
|
You can select the appropriate embedding size for your use case, ensuring flexibility in resource management. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) <!-- at revision c23d21b0620b635a76227c604d44e43a9f0ee389 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 1024 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
|
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
matryoshka_dim = 786 |
|
model = SentenceTransformer("omarelshehy/arabic-english-sts-matryoshka", truncate_dim=matryoshka_dim) |
|
# Run inference |
|
sentences = [ |
|
"She enjoyed reading books by the window as the rain poured outside.", |
|
"كانت تستمتع بقراءة الكتب بجانب النافذة بينما كانت الأمطار تتساقط في الخارج.", |
|
"Reading by the window was her favorite thing, especially during rainy days." |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 1024] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |