distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6547
  • Accuracy: 0.87

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1837 1.0 113 2.0719 0.39
1.5697 2.0 226 1.5216 0.56
1.2341 3.0 339 1.0787 0.7
1.0559 4.0 452 0.9199 0.75
0.7576 5.0 565 0.8469 0.75
0.5683 6.0 678 0.7064 0.76
0.4652 7.0 791 0.5912 0.79
0.1398 8.0 904 0.5407 0.81
0.2012 9.0 1017 0.4836 0.87
0.0445 10.0 1130 0.4839 0.88
0.0145 11.0 1243 0.5439 0.88
0.0519 12.0 1356 0.6309 0.85
0.0068 13.0 1469 0.5626 0.88
0.0054 14.0 1582 0.5949 0.88
0.0054 15.0 1695 0.5889 0.88
0.0033 16.0 1808 0.6233 0.89
0.1396 17.0 1921 0.6340 0.88
0.0029 18.0 2034 0.6362 0.88
0.0026 19.0 2147 0.6441 0.88
0.0027 20.0 2260 0.6547 0.87

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for omthkkr/distilhubert-finetuned-gtzan

Finetuned
(414)
this model

Dataset used to train omthkkr/distilhubert-finetuned-gtzan

Evaluation results