|
--- |
|
license: apache-2.0 |
|
base_model: ondevicellm/tinyllama_moe |
|
tags: |
|
- alignment-handbook |
|
- generated_from_trainer |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
datasets: |
|
- HuggingFaceH4/ultrachat_200k |
|
- ondevicellm/SlimOrca |
|
model-index: |
|
- name: tinyllama_moe_sft_ultrachat-slimorca |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# tinyllama_moe_sft_ultrachat-slimorca |
|
|
|
This model is a fine-tuned version of [ondevicellm/tinyllama_moe](https://huggingface.co/ondevicellm/tinyllama_moe) on the HuggingFaceH4/ultrachat_200k and the ondevicellm/SlimOrca datasets. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1526 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 128 |
|
- total_eval_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 120 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 1.4601 | 0.05 | 100 | 1.3361 | |
|
| 1.3324 | 0.1 | 200 | 1.2566 | |
|
| 1.2946 | 0.14 | 300 | 1.2279 | |
|
| 1.2767 | 0.19 | 400 | 1.2111 | |
|
| 1.2298 | 0.24 | 500 | 1.1995 | |
|
| 1.2247 | 0.29 | 600 | 1.1902 | |
|
| 1.2208 | 0.34 | 700 | 1.1833 | |
|
| 1.2375 | 0.39 | 800 | 1.1775 | |
|
| 1.2038 | 0.43 | 900 | 1.1726 | |
|
| 1.1926 | 0.48 | 1000 | 1.1683 | |
|
| 1.1933 | 0.53 | 1100 | 1.1649 | |
|
| 1.1893 | 0.58 | 1200 | 1.1618 | |
|
| 1.2029 | 0.63 | 1300 | 1.1593 | |
|
| 1.2201 | 0.68 | 1400 | 1.1572 | |
|
| 1.1741 | 0.72 | 1500 | 1.1557 | |
|
| 1.1813 | 0.77 | 1600 | 1.1545 | |
|
| 1.1668 | 0.82 | 1700 | 1.1536 | |
|
| 1.1495 | 0.87 | 1800 | 1.1530 | |
|
| 1.1595 | 0.92 | 1900 | 1.1527 | |
|
| 1.1607 | 0.97 | 2000 | 1.1526 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|