tinyllama_mole_sft_ultrachat_ep3

This model was trained from scratch on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1127

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 120
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
1.3007 0.09 100 1.2780
1.2255 0.18 200 1.2158
1.192 0.26 300 1.1921
1.1696 0.35 400 1.1770
1.1426 0.44 500 1.1666
1.1628 0.53 600 1.1583
1.1501 0.61 700 1.1513
1.137 0.7 800 1.1457
1.1321 0.79 900 1.1407
1.1156 0.88 1000 1.1359
1.1395 0.96 1100 1.1318
1.0564 1.05 1200 1.1315
1.0594 1.14 1300 1.1295
1.0711 1.23 1400 1.1274
1.0624 1.31 1500 1.1256
1.0652 1.4 1600 1.1233
1.0626 1.49 1700 1.1213
1.0457 1.58 1800 1.1195
1.0665 1.66 1900 1.1178
1.07 1.75 2000 1.1158
1.0567 1.84 2100 1.1141
1.0304 1.93 2200 1.1127
1.0132 2.01 2300 1.1170
1.0203 2.1 2400 1.1170
1.0088 2.19 2500 1.1168
1.002 2.28 2600 1.1162
1.0004 2.37 2700 1.1157
1.0058 2.45 2800 1.1156
1.0118 2.54 2900 1.1150
0.9941 2.63 3000 1.1148
1.0127 2.72 3100 1.1147
1.0039 2.8 3200 1.1144
1.0 2.89 3300 1.1143
1.0188 2.98 3400 1.1143

Framework versions

  • Transformers 4.37.0
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
27
Safetensors
Model size
1.11B params
Tensor type
BF16
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Model tree for ondevicellm/tinyllama_mole_sft_ultrachat_ep3

Finetunes
1 model