metadata
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: Boya1_3Class_Adamax_1e4_20Epoch_Beit-large-224_fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8414336139017106
Boya1_3Class_Adamax_1e4_20Epoch_Beit-large-224_fold1
This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.1930
- Accuracy: 0.8414
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.3482 | 1.0 | 924 | 0.4193 | 0.8262 |
0.3157 | 2.0 | 1848 | 0.4359 | 0.8352 |
0.1507 | 3.0 | 2772 | 0.6032 | 0.8403 |
0.1694 | 4.0 | 3696 | 0.9383 | 0.8414 |
0.0111 | 5.0 | 4620 | 1.1930 | 0.8414 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.13.2