|
---
|
|
license: apache-2.0
|
|
base_model: facebook/deit-tiny-patch16-224
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- imagefolder
|
|
metrics:
|
|
- accuracy
|
|
model-index:
|
|
- name: Boya1_Adamax_1-e4_20Epoch_Deit-tiny-patch16_fold4
|
|
results:
|
|
- task:
|
|
name: Image Classification
|
|
type: image-classification
|
|
dataset:
|
|
name: imagefolder
|
|
type: imagefolder
|
|
config: default
|
|
split: test
|
|
args: default
|
|
metrics:
|
|
- name: Accuracy
|
|
type: accuracy
|
|
value: 0.5623306233062331
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# Boya1_Adamax_1-e4_20Epoch_Deit-tiny-patch16_fold4
|
|
|
|
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 3.5379
|
|
- Accuracy: 0.5623
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 0.0001
|
|
- train_batch_size: 16
|
|
- eval_batch_size: 16
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- lr_scheduler_warmup_ratio: 0.1
|
|
- num_epochs: 20
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
|
| 1.4184 | 1.0 | 923 | 1.5125 | 0.4894 |
|
|
| 1.1581 | 2.0 | 1846 | 1.3440 | 0.5398 |
|
|
| 1.0675 | 3.0 | 2769 | 1.2921 | 0.5683 |
|
|
| 0.9984 | 4.0 | 3692 | 1.3169 | 0.5756 |
|
|
| 0.6437 | 5.0 | 4615 | 1.3971 | 0.5629 |
|
|
| 0.491 | 6.0 | 5538 | 1.5307 | 0.5547 |
|
|
| 0.3697 | 7.0 | 6461 | 1.6679 | 0.5615 |
|
|
| 0.2372 | 8.0 | 7384 | 1.9476 | 0.5461 |
|
|
| 0.0824 | 9.0 | 8307 | 2.1631 | 0.5531 |
|
|
| 0.0471 | 10.0 | 9230 | 2.4822 | 0.5485 |
|
|
| 0.0645 | 11.0 | 10153 | 2.7301 | 0.5523 |
|
|
| 0.0461 | 12.0 | 11076 | 2.8827 | 0.5588 |
|
|
| 0.0021 | 13.0 | 11999 | 3.1615 | 0.5575 |
|
|
| 0.0011 | 14.0 | 12922 | 3.1796 | 0.5612 |
|
|
| 0.0141 | 15.0 | 13845 | 3.2737 | 0.5566 |
|
|
| 0.0004 | 16.0 | 14768 | 3.3570 | 0.5593 |
|
|
| 0.0004 | 17.0 | 15691 | 3.4150 | 0.5621 |
|
|
| 0.0003 | 18.0 | 16614 | 3.4800 | 0.5615 |
|
|
| 0.0002 | 19.0 | 17537 | 3.5180 | 0.5615 |
|
|
| 0.0002 | 20.0 | 18460 | 3.5379 | 0.5623 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.40.1
|
|
- Pytorch 2.1.0
|
|
- Datasets 2.19.0
|
|
- Tokenizers 0.19.1
|
|
|