|
---
|
|
license: apache-2.0
|
|
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- imagefolder
|
|
metrics:
|
|
- accuracy
|
|
model-index:
|
|
- name: Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-large-patch16_fold3
|
|
results:
|
|
- task:
|
|
name: Image Classification
|
|
type: image-classification
|
|
dataset:
|
|
name: imagefolder
|
|
type: imagefolder
|
|
config: default
|
|
split: test
|
|
args: default
|
|
metrics:
|
|
- name: Accuracy
|
|
type: accuracy
|
|
value: 0.654491341991342
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-large-patch16_fold3
|
|
|
|
This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 1.6305
|
|
- Accuracy: 0.6545
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 1e-05
|
|
- train_batch_size: 16
|
|
- eval_batch_size: 16
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- lr_scheduler_warmup_ratio: 0.1
|
|
- num_epochs: 10
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
|
| 1.0933 | 1.0 | 923 | 1.1338 | 0.6069 |
|
|
| 0.9991 | 2.0 | 1846 | 1.0315 | 0.6488 |
|
|
| 0.8084 | 3.0 | 2769 | 0.9631 | 0.6669 |
|
|
| 0.4871 | 4.0 | 3692 | 1.0424 | 0.6650 |
|
|
| 0.3928 | 5.0 | 4615 | 1.1438 | 0.6599 |
|
|
| 0.2213 | 6.0 | 5538 | 1.2845 | 0.6591 |
|
|
| 0.1199 | 7.0 | 6461 | 1.3914 | 0.6553 |
|
|
| 0.1231 | 8.0 | 7384 | 1.5372 | 0.6504 |
|
|
| 0.1309 | 9.0 | 8307 | 1.6016 | 0.6526 |
|
|
| 0.074 | 10.0 | 9230 | 1.6305 | 0.6545 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.35.0
|
|
- Pytorch 2.1.0
|
|
- Datasets 2.14.6
|
|
- Tokenizers 0.14.1
|
|
|