File size: 3,088 Bytes
73a7091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---

license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: Boya1_SGD_1-e3_20Epoch_Deit-tiny-patch16_fold1
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.3950583763236492
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Boya1_SGD_1-e3_20Epoch_Deit-tiny-patch16_fold1



This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.

It achieves the following results on the evaluation set:

- Loss: 1.8160

- Accuracy: 0.3951



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1

- num_epochs: 20

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 2.4438        | 1.0   | 924   | 2.4927          | 0.1898   |
| 2.3969        | 2.0   | 1848  | 2.3384          | 0.2389   |
| 2.2609        | 3.0   | 2772  | 2.2168          | 0.2878   |
| 2.0421        | 4.0   | 3696  | 2.1285          | 0.3068   |
| 2.0227        | 5.0   | 4620  | 2.0634          | 0.3296   |
| 1.99          | 6.0   | 5544  | 2.0084          | 0.3397   |
| 1.9954        | 7.0   | 6468  | 1.9664          | 0.3549   |
| 2.0727        | 8.0   | 7392  | 1.9354          | 0.3652   |
| 2.0158        | 9.0   | 8316  | 1.9072          | 0.3704   |
| 1.8488        | 10.0  | 9240  | 1.8880          | 0.3750   |
| 1.8985        | 11.0  | 10164 | 1.8721          | 0.3790   |
| 1.7309        | 12.0  | 11088 | 1.8576          | 0.3812   |
| 1.8129        | 13.0  | 12012 | 1.8465          | 0.3899   |
| 1.7599        | 14.0  | 12936 | 1.8384          | 0.3866   |
| 1.7902        | 15.0  | 13860 | 1.8309          | 0.3894   |
| 1.7502        | 16.0  | 14784 | 1.8250          | 0.3932   |
| 1.7034        | 17.0  | 15708 | 1.8221          | 0.3934   |
| 1.8587        | 18.0  | 16632 | 1.8187          | 0.3940   |
| 1.8137        | 19.0  | 17556 | 1.8165          | 0.3942   |
| 1.9039        | 20.0  | 18480 | 1.8160          | 0.3951   |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.1.0
- Datasets 2.19.0
- Tokenizers 0.19.1