|
--- |
|
license: apache-2.0 |
|
base_model: microsoft/swin-large-patch4-window7-224-in22k |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: Boya2_SGD_1e3_20Epoch_Swin-large-224_fold3 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: test |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.4703308722996992 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Boya2_SGD_1e3_20Epoch_Swin-large-224_fold3 |
|
|
|
This model is a fine-tuned version of [microsoft/swin-large-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-large-patch4-window7-224-in22k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.7253 |
|
- Accuracy: 0.4703 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:| |
|
| 2.4987 | 1.0 | 913 | 2.4779 | 0.2773 | |
|
| 2.2499 | 2.0 | 1826 | 2.3076 | 0.2986 | |
|
| 2.1231 | 3.0 | 2739 | 2.2022 | 0.3325 | |
|
| 2.1706 | 4.0 | 3652 | 2.1236 | 0.3672 | |
|
| 2.0969 | 5.0 | 4565 | 2.0581 | 0.3940 | |
|
| 1.9524 | 6.0 | 5478 | 2.0029 | 0.4085 | |
|
| 1.9868 | 7.0 | 6391 | 1.9548 | 0.4208 | |
|
| 1.9729 | 8.0 | 7304 | 1.9129 | 0.4293 | |
|
| 1.9817 | 9.0 | 8217 | 1.8827 | 0.4331 | |
|
| 1.9117 | 10.0 | 9130 | 1.8505 | 0.4430 | |
|
| 1.8805 | 11.0 | 10043 | 1.8244 | 0.4482 | |
|
| 1.8198 | 12.0 | 10956 | 1.8053 | 0.4528 | |
|
| 1.7002 | 13.0 | 11869 | 1.7829 | 0.4558 | |
|
| 1.811 | 14.0 | 12782 | 1.7721 | 0.4602 | |
|
| 1.8637 | 15.0 | 13695 | 1.7553 | 0.4602 | |
|
| 1.8566 | 16.0 | 14608 | 1.7454 | 0.4654 | |
|
| 1.742 | 17.0 | 15521 | 1.7350 | 0.4665 | |
|
| 1.692 | 18.0 | 16434 | 1.7303 | 0.4695 | |
|
| 1.8241 | 19.0 | 17347 | 1.7261 | 0.4695 | |
|
| 1.8203 | 20.0 | 18260 | 1.7253 | 0.4703 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.1 |
|
- Pytorch 2.1.1+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.13.2 |
|
|