onizukal's picture
End of training
bfd949f verified
---
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: Boya3_3Class_RMSprop_1e5_20Epoch_Beit-large-224_fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8322147651006712
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Boya3_3Class_RMSprop_1e5_20Epoch_Beit-large-224_fold2
This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8357
- Accuracy: 0.8322
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4181 | 1.0 | 631 | 0.4865 | 0.7722 |
| 0.3391 | 2.0 | 1262 | 0.4494 | 0.8314 |
| 0.1276 | 3.0 | 1893 | 0.5148 | 0.8393 |
| 0.1436 | 4.0 | 2524 | 0.7474 | 0.8302 |
| 0.1404 | 5.0 | 3155 | 1.1243 | 0.8287 |
| 0.0742 | 6.0 | 3786 | 1.4178 | 0.8401 |
| 0.0155 | 7.0 | 4417 | 1.6465 | 0.8247 |
| 0.0 | 8.0 | 5048 | 1.7427 | 0.8239 |
| 0.0 | 9.0 | 5679 | 1.8000 | 0.8346 |
| 0.0 | 10.0 | 6310 | 1.8357 | 0.8322 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.13.2