metadata
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: Karma_3Class_RMSprop_1e4_20Epoch_Beit-large-224_fold3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8325237806112123
Karma_3Class_RMSprop_1e4_20Epoch_Beit-large-224_fold3
This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.7557
- Accuracy: 0.8325
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.4738 | 1.0 | 2467 | 0.5239 | 0.7829 |
0.4272 | 2.0 | 4934 | 0.4426 | 0.8216 |
0.294 | 3.0 | 7401 | 0.4707 | 0.8306 |
0.2323 | 4.0 | 9868 | 0.4968 | 0.8307 |
0.0208 | 5.0 | 12335 | 0.7557 | 0.8325 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.13.2