Model Card for Model ID

Model Details

Model Description

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

  • Developed by: [Sainbayar B. (Б. Сайнбаяр) https://www.instagram.com/only_sainaa/]
  • Funded by [optional]: [More Information Needed]
  • Shared by [optional]: [More Information Needed]
  • Model type: [Mongolian Cyrillic to Traditional Mongolian Script conversion (Монгол кириллээс монгол бичиг рүү хөрвүүлэгч загвар)]
  • Language(s) (NLP): [Mongolian /Монгол/]
  • License: [More Information Needed]
  • Finetuned from model [google-t5-small]: [More Information Needed]
#Load model directly
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("onlysainaa/cyrillic_to_script-t5-model")
model = AutoModelForSeq2SeqLM.from_pretrained("onlysainaa/cyrillic_to_script-t5-model")

#Check if CUDA (GPU) is available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

#Move the model to the same device (GPU or CPU)
model.to(device)

#Prepare text input
input_text = "сайн уу"  #Mongolian greeting

#Tokenize the input text
inputs = tokenizer(input_text, return_tensors="pt")

#Move the input tensors to the same device as the model
inputs = {k: v.to(device) for k, v in inputs.items() if k in ['input_ids', 'attention_mask']}

#Generate translation
outputs = model.generate(**inputs)

#Decode the output to human-readable text
translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)

#Print the translated text
print(f"Translated Text: {translated_text}")
Downloads last month
3
Safetensors
Model size
60.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using onlysainaa/cyrillic_to_script-t5-model 1