|
--- |
|
base_model: PekingU/rtdetr_r50vd |
|
library_name: transformers.js |
|
--- |
|
|
|
https://huggingface.co/PekingU/rtdetr_r50vd with ONNX weights to be compatible with Transformers.js. |
|
|
|
# Usage (Transformers.js) |
|
|
|
> [!IMPORTANT] |
|
> NOTE: RT-DETR support is experimental and requires you to install Transformers.js [v3](https://github.com/xenova/transformers.js/tree/v3) from source. |
|
|
|
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [GitHub](https://github.com/xenova/transformers.js/tree/v3) using: |
|
```bash |
|
npm install xenova/transformers.js#v3 |
|
``` |
|
|
|
**Example:** Perform object-detection with `onnx-community/rtdetr_r50vd`. |
|
|
|
```js |
|
import { pipeline } from '@xenova/transformers'; |
|
|
|
const detector = await pipeline('object-detection', 'onnx-community/rtdetr_r50vd'); |
|
|
|
const img = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg'; |
|
const output = await detector(img, { threshold: 0.9 }); |
|
// [{ |
|
// score: 0.9720445871353149, |
|
// label: 'cat', |
|
// box: { xmin: 14, ymin: 54, xmax: 319, ymax: 472 } |
|
// }, |
|
// ... |
|
// { |
|
// score: 0.9795005917549133, |
|
// label: 'sofa', |
|
// box: { xmin: 0, ymin: 0, xmax: 640, ymax: 472 } |
|
// }] |
|
``` |
|
|
|
--- |
|
|
|
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |