oohtmeel's picture
Update README.md
d714f25 verified
|
raw
history blame
1.85 kB
metadata
license: mit
pipeline_tag: image-classification
tags:
  - medical

Model Details

This model is trained on 224X224 Grayscale images which are CT-scans that are transformed into JPEG. The model is a finetuned version of Swin Transformer (tiny-sized model). I also used this tutorial.Swin Transformer (tiny-sized model).

Uses

The model can be used to classify JPEG images of CT scans into either cancer positive or Cancer negative groups. I think it would work okay for any image classification task.

Training Data

The model was trained on data originally obtained from the National Cancer Institute Imaging Data Commons. https://portal.imaging.datacommons.cancer.gov/explore/ The data set used consisted of about 11,000 images which were transformed CT scans some of which contained Cancerous Nodules and some that did not.

How to Use


from huggingface_hub import hf_hub_download
from PIL import Image

abc= hf_hub_download(repo_id="oohtmeel/swin-tiny-patch4-finetuned-lung-cancer-ct-scans", 
                filename="_X000a109d-56da-4c3f-8680-55afa04d6ae0.dcm.jpg.jpg")
image = Image.open(abc)
processor = AutoImageProcessor.from_pretrained("oohtmeel/swin-tiny-patch4-finetuned-lung-cancer-ct-scans")
model = AutoModelForImageClassification.from_pretrained("oohtmeel/swin-tiny-patch4-finetuned-lung-cancer-ct-scans")
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])