|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- winglian/no_robots_rlhf |
|
- HuggingFaceH4/no_robots |
|
base_model: teknium/OpenHermes-2.5-Mistral-7B |
|
model-index: |
|
- name: qlora-out |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
# openhermes-2_5-dpo-no-robots |
|
|
|
This model is a RL fine-tuned version of [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) on a preference dataset derived from HuggingFace's [no robots dataset](https://huggingface.co/datasets/HuggingFaceH4/no_robots) using DPO. |
|
|
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-07 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- total_eval_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 20 |
|
- training_steps: 408 |
|
|
|
### Training results |
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_openaccess-ai-collective__openhermes-2_5-dpo-no-robots) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |66.40| |
|
|AI2 Reasoning Challenge (25-Shot)|64.93| |
|
|HellaSwag (10-Shot) |84.30| |
|
|MMLU (5-Shot) |63.86| |
|
|TruthfulQA (0-shot) |52.12| |
|
|Winogrande (5-shot) |77.90| |
|
|GSM8k (5-shot) |55.27| |
|
|
|
|