MiniCPM-Embedding / README.md
Kaguya-19's picture
Update README.md
6b6c466 verified
|
raw
history blame
8.27 kB
---
language:
- zh
- en
base_model: openbmb/MiniCPM-2B-sft-bf16
---
## MiniCPM-Embedding
**MiniCPM-Embedding** 是面壁智能与清华大学自然语言处理实验室(THUNLP)共同开发的中英双语言文本嵌入模型,有如下特点:
- 出色的中文、英文检索能力。
- 出色的中英跨语言检索能力。
MiniCPM-Embedding 基于 [MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) 训练,结构上采取双向注意力和 Weighted Mean Pooling [1]。采取多阶段训练方式,共使用包括开源数据、机造数据、闭源数据在内的约 600 万条训练数据。
欢迎关注 RAG 套件系列:
- 检索模型:[MiniCPM-Embedding](https://huggingface.co/openbmb/MiniCPM-Embedding)
- 重排模型:[MiniCPM-Reranker](https://huggingface.co/openbmb/MiniCPM-Reranker)
- 面向 RAG 场景的 LoRA 插件:[MiniCPM3-RAG-LoRA](https://huggingface.co/openbmb/MiniCPM3-RAG-LoRA)
**MiniCPM-Embedding** is a bilingual & cross-lingual text embedding model developed by ModelBest Inc. and THUNLP, featuring:
- Exceptional Chinese and English retrieval capabilities.
- Outstanding cross-lingual retrieval capabilities between Chinese and English.
MiniCPM-Embedding is trained based on [MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) and incorporates bidirectional attention and Weighted Mean Pooling [1] in its architecture. The model underwent multi-stage training using approximately 6 million training examples, including open-source, synthetic, and proprietary data.
We also invite you to explore the RAG toolkit series:
- Retrieval Model: [MiniCPM-Embedding](https://huggingface.co/openbmb/MiniCPM-Embedding)
- Re-ranking Model: [MiniCPM-Reranker](https://huggingface.co/openbmb/MiniCPM-Reranker)
- LoRA Plugin for RAG scenarios: [MiniCPM3-RAG-LoRA](https://huggingface.co/openbmb/MiniCPM3-RAG-LoRA)
[1] Muennighoff, N. (2022). Sgpt: Gpt sentence embeddings for semantic search. arXiv preprint arXiv:2202.08904.
## 模型信息 Model Information
- 模型大小:2.4B
- 嵌入维度:2304
- 最大输入token数:512
- Model Size: 2.4B
- Embedding Dimension: 2304
- Max Input Tokens: 512
## 使用方法 Usage
### 输入格式 Input Format
本模型支持 query 侧指令,格式如下:
MiniCPM-Embedding supports query-side instructions in the following format:
```
Instruction: {{ instruction }} Query: {{ query }}
```
例如:
For example:
```
Instruction: 为这个医学问题检索相关回答。Query: 咽喉癌的成因是什么?
```
```
Instruction: Given a claim about climate change, retrieve documents that support or refute the claim. Query: However the warming trend is slower than most climate models have forecast.
```
也可以不提供指令,即采取如下格式:
MiniCPM-Embedding also works in instruction-free mode in the following format:
```
Query: {{ query }}
```
我们在 BEIR 与 C-MTEB/Retrieval 上测试时使用的指令见 `instructions.json`,其他测试不使用指令。文档侧直接输入文档原文。
When running evaluation on BEIR and C-MTEB/Retrieval, we use instructions in `instructions.json`. For other evaluations, we do not use instructions. On the document side, we directly use the bare document as the input.
### 环境要求 Requirements
```
transformers==4.37.2
flash-attn>2.3.5
```
### 示例脚本 Demo
```python
from transformers import AutoModel, AutoTokenizer
import torch
import torch.nn.functional as F
model_name = "openbmb/MiniCPM-Embedding"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name, trust_remote_code=True, attn_implementation="flash_attention_2", torch_dtype=torch.float16).to("cuda")
model.eval()
def weighted_mean_pooling(hidden, attention_mask):
attention_mask_ = attention_mask * attention_mask.cumsum(dim=1)
s = torch.sum(hidden * attention_mask_.unsqueeze(-1).float(), dim=1)
d = attention_mask_.sum(dim=1, keepdim=True).float()
reps = s / d
return reps
@torch.no_grad()
def encode(input_texts):
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt', return_attention_mask=True).to("cuda")
outputs = model(**batch_dict)
attention_mask = batch_dict["attention_mask"]
hidden = outputs.last_hidden_state
reps = weighted_mean_pooling(hidden, attention_mask)
embeddings = F.normalize(reps, p=2, dim=1).detach().cpu().numpy()
return embeddings
queries = ["中国的首都是哪里?"]
passages = ["beijing", "shanghai"]
INSTRUCTION = "Query: "
queries = [INSTRUCTION + query for query in queries]
embeddings_query = encode(queries)
embeddings_doc = encode(passages)
scores = (embeddings_query @ embeddings_doc.T)
print(scores.tolist()) # [[0.3535913825035095, 0.18596848845481873]]
```
## 实验结果 Evaluation Results
### 中文与英文检索结果 CN/EN Retrieval Results
| 模型 Model | C-MTEB/Retrieval (NDCG@10) | BEIR (NDCG@10) |
|------------------------------|-------------------|---------------|
| bge-large-zh-v1.5 | 70.46 | - |
| gte-large-zh | 72.49 | - |
| Zhihui_LLM_Embedding | 76.74 | |
| bge-large-en-v1.5 | - | 54.29 |
| gte-en-large-v1.5 | - | 57.91 |
| NV-Retriever-v1 | - | 60.9 |
| bge-en-icl | - | 62.16 |
| NV-Embed-v2 | - | 62.65 |
| me5-large | 63.66 | 51.43 |
| bge-m3(Dense) | 65.43 | 48.82 |
| gte-multilingual-base(Dense) | 71.95 | 51.08 |
| gte-Qwen2-1.5B-instruct | 71.86 | 58.29 |
| gte-Qwen2-7B-instruct | 76.03 | 60.25 |
| bge-multilingual-gemma2 | 73.73 | 59.24 |
| MiniCPM-Embedding | **76.76** | 58.56 |
| MiniCPM-Embedding+MiniCPM-Reranker | 77.08 | 61.61 |
### 中英跨语言检索结果 CN-EN Cross-lingual Retrieval Results
| 模型 Model | MKQA En-Zh_CN (Recall@20) | NeuCLIR22 (NDCG@10) | NeuCLIR23 (NDCG@10) |
|------------------------------|--------------------|--------------------|--------------------|
| me5-large | 44.3 | 9.01 | 25.33 |
| bge-m3(Dense) | 66.4 | 30.49 | 41.09 |
| gte-multilingual-base(Dense) | 68.2 | 39.46 | 45.86 |
| gte-Qwen2-1.5B-instruct | 68.52 | 49.11 | 45.05 |
| gte-Qwen2-7B-instruct | 68.27 | 49.14 | 49.6 |
| MiniCPM-Embedding | **72.95** | **52.65** | **49.95** |
| MiniCPM-Embedding+MiniCPM-Reranker | 74.33 | 53.21 | 54.12 |
## 许可证 License
- 本仓库中代码依照 [Apache-2.0 协议](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE)开源。
- MiniCPM-Embedding 模型权重的使用则需要遵循 [MiniCPM 模型协议](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md)。
- MiniCPM-Embedding 模型权重对学术研究完全开放。如需将模型用于商业用途,请填写[此问卷](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g)。
* The code in this repo is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.
* The usage of MiniCPM-Embedding model weights must strictly follow [MiniCPM Model License.md](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md).
* The models and weights of MiniCPM-Embedding are completely free for academic research. After filling out a ["questionnaire"](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, MiniCPM-Embedding weights are also available for free commercial use.