roberta-base-hangul-2-hanja

This model is a fine-tuned version of klue/roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Accuracy: 1.0
  • F1: 1.0
  • Loss: 0.0000
  • Precision: 1.0
  • Recall: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 110

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss Precision Recall
1.6465 1.0 963 0.9618 0.8738 0.4191 0.8922 0.8561
0.3862 2.0 1926 0.9790 0.9456 0.2318 0.9496 0.9417
0.2326 3.0 2889 0.9854 0.9723 0.1554 0.9751 0.9696
0.1607 4.0 3852 0.9901 0.9788 0.1137 0.9797 0.9780
0.1188 5.0 4815 0.9927 0.9839 0.0863 0.9853 0.9825
0.0921 6.0 5778 0.9934 0.9832 0.0686 0.9842 0.9822
0.0726 7.0 6741 0.9941 0.9848 0.0568 0.9857 0.9839
0.06 8.0 7704 0.9956 0.9886 0.0494 0.9909 0.9864
0.0496 9.0 8667 0.9960 0.9897 0.0421 0.9912 0.9881
0.0406 10.0 9630 0.9970 0.9916 0.0372 0.9920 0.9913
0.0351 11.0 10593 0.9965 0.9890 0.0359 0.9916 0.9864
0.0301 12.0 11556 0.9969 0.9888 0.0331 0.9905 0.9871
0.0251 13.0 12519 0.9975 0.9914 0.0306 0.9926 0.9902
0.0226 14.0 13482 0.9973 0.9913 0.0286 0.9930 0.9895
0.0195 15.0 14445 0.9972 0.9897 0.0271 0.9909 0.9885
0.0168 16.0 15408 0.9977 0.9925 0.0243 0.9937 0.9913
0.0145 17.0 16371 0.9977 0.9916 0.0249 0.9923 0.9909
0.0128 18.0 17334 0.9977 0.9925 0.0226 0.9934 0.9916
0.0116 19.0 18297 0.9975 0.9904 0.0234 0.9926 0.9881
0.0096 20.0 19260 0.9977 0.9918 0.0226 0.9930 0.9906
0.0082 21.0 20223 0.9977 0.9920 0.0248 0.9930 0.9909
0.0075 22.0 21186 0.9978 0.9925 0.0214 0.9934 0.9916
0.0066 23.0 22149 0.9975 0.9907 0.0238 0.9930 0.9885
0.006 24.0 23112 0.9975 0.9904 0.0243 0.9919 0.9888
0.005 25.0 24075 0.9977 0.9930 0.0226 0.9937 0.9923
0.0044 26.0 25038 0.9978 0.9923 0.0212 0.9933 0.9913
0.0037 27.0 26001 0.9978 0.9918 0.0242 0.9933 0.9902
0.0032 28.0 26964 0.9978 0.9921 0.0215 0.9923 0.9920
0.0029 29.0 27927 0.9977 0.9928 0.0226 0.9944 0.9913
0.0024 30.0 28890 0.9977 0.9925 0.0218 0.9930 0.9920
0.0022 31.0 29853 0.9979 0.9930 0.0218 0.9930 0.9930
0.002 32.0 30816 0.9978 0.9934 0.0224 0.9930 0.9937
0.0017 33.0 31779 0.9982 0.9949 0.0216 0.9951 0.9948
0.0015 34.0 32742 0.9982 0.9941 0.0225 0.9944 0.9937
0.0015 35.0 33705 0.9978 0.9939 0.0227 0.9944 0.9934
0.0014 36.0 34668 0.9980 0.9937 0.0224 0.9941 0.9934
0.001 37.0 35631 0.9980 0.9937 0.0228 0.9947 0.9927
0.0009 38.0 36594 0.9980 0.9937 0.0228 0.9941 0.9934
0.0008 39.0 37557 0.9979 0.9934 0.0224 0.9944 0.9923
0.0007 40.0 38520 0.9979 0.9925 0.0245 0.9944 0.9906
0.0007 41.0 39483 0.9980 0.9934 0.0222 0.9941 0.9927
0.0005 42.0 40446 0.9977 0.9927 0.0237 0.9934 0.9920
0.0005 43.0 41409 0.9977 0.9921 0.0229 0.9937 0.9906
0.0006 44.0 42372 0.9978 0.9934 0.0237 0.9944 0.9923
0.0005 45.0 43335 0.9979 0.9935 0.0227 0.9944 0.9927
0.0004 46.0 44298 0.9979 0.9934 0.0228 0.9937 0.9930
0.0004 47.0 45261 0.9979 0.9941 0.0241 0.9948 0.9934
0.0003 48.0 46224 0.9977 0.9921 0.0242 0.9937 0.9906
0.0004 49.0 47187 0.9979 0.9937 0.0235 0.9944 0.9930
0.0003 50.0 48150 0.9978 0.9930 0.0234 0.9934 0.9927
0.0003 51.0 49113 0.9979 0.9934 0.0239 0.9944 0.9923
0.0003 52.0 50076 0.9978 0.9927 0.0240 0.9940 0.9913
0.0002 53.0 51039 0.9976 0.9923 0.0242 0.9930 0.9916
0.0003 54.0 52002 0.9978 0.9927 0.0239 0.9934 0.9920
0.0002 55.0 52965 0.9978 0.9927 0.0240 0.9934 0.9920
0.0002 56.0 53928 0.9979 0.9934 0.0238 0.9944 0.9923
0.0002 57.0 54891 0.9978 0.9927 0.0240 0.9940 0.9913
0.0002 58.0 55854 0.9978 0.9927 0.0240 0.9940 0.9913
0.0002 59.0 56817 0.9978 0.9927 0.0240 0.9940 0.9913
0.0002 60.0 57780 0.9978 0.9927 0.0240 0.9940 0.9913
0.0011 61.0 58743 0.9999 0.9993 0.0002 0.9996 0.9989
0.0006 62.0 59706 0.9999 1.0 0.0005 1.0 1.0
0.0004 63.0 60669 0.9999 0.9993 0.0004 0.9996 0.9989
0.0005 64.0 61632 1.0 1.0 0.0001 1.0 1.0
0.0004 65.0 62595 1.0 1.0 0.0000 1.0 1.0
0.0003 66.0 63558 1.0 1.0 0.0001 1.0 1.0
0.0003 67.0 64521 1.0 1.0 0.0001 1.0 1.0
0.0003 68.0 65484 1.0 1.0 0.0001 1.0 1.0
0.0003 69.0 66447 1.0 1.0 0.0001 1.0 1.0
0.0002 70.0 67410 1.0 1.0 0.0001 1.0 1.0
0.0002 71.0 68373 1.0 1.0 0.0001 1.0 1.0
0.0005 72.0 69336 1.0 1.0 0.0001 1.0 1.0
0.0003 73.0 70299 0.9999 1.0 0.0003 1.0 1.0
0.0003 74.0 71262 0.9999 1.0 0.0003 1.0 1.0
0.0002 75.0 72225 0.9999 1.0 0.0004 1.0 1.0
0.0001 76.0 73188 1.0 1.0 0.0002 1.0 1.0
0.0002 77.0 74151 1.0 1.0 0.0003 1.0 1.0
0.0002 78.0 75114 1.0 1.0 0.0003 1.0 1.0
0.0002 79.0 76077 1.0 1.0 0.0003 1.0 1.0
0.0002 80.0 77040 0.9999 0.9996 0.0006 0.9996 0.9996
0.0001 81.0 78003 1.0 1.0 0.0003 1.0 1.0
0.0001 82.0 78966 0.9998 0.9996 0.0006 0.9996 0.9996
0.0001 83.0 79929 1.0 1.0 0.0003 1.0 1.0
0.0001 84.0 80892 0.9999 0.9996 0.0004 0.9996 0.9996
0.0001 85.0 81855 0.9998 0.9993 0.0004 0.9993 0.9993
0.0002 86.0 82818 0.9998 0.9989 0.0011 0.9989 0.9989
0.0001 87.0 83781 1.0 1.0 0.0004 1.0 1.0
0.0002 88.0 84744 0.9999 0.9996 0.0004 0.9996 0.9996
0.0001 89.0 85707 1.0 1.0 0.0004 1.0 1.0
0.0001 90.0 86670 0.9998 0.9993 0.0005 0.9993 0.9993
0.0001 91.0 87633 0.9999 0.9996 0.0005 0.9996 0.9996
0.0001 92.0 88596 0.9999 0.9996 0.0005 0.9996 0.9996
0.0001 93.0 89559 0.9999 0.9996 0.0005 0.9996 0.9996
0.0001 94.0 90522 0.9999 0.9996 0.0005 0.9996 0.9996
0.0 95.0 91485 0.9999 0.9996 0.0006 0.9996 0.9996
0.0 96.0 92448 0.9997 0.9989 0.0008 0.9985 0.9993
0.0001 97.0 93411 0.9997 0.9993 0.0009 0.9993 0.9993
0.0 98.0 94374 0.9997 0.9993 0.0008 0.9993 0.9993
0.0001 99.0 95337 0.9997 0.9993 0.0008 0.9993 0.9993
0.0001 100.0 96300 0.9996 0.9989 0.0007 0.9989 0.9989
0.0 101.0 97263 0.9994 0.9989 0.0012 0.9989 0.9989
0.0001 102.0 98226 0.9995 0.9989 0.0008 0.9989 0.9989
0.0 103.0 99189 0.9996 0.9989 0.0012 0.9989 0.9989
0.0 104.0 100152 0.9996 0.9989 0.0011 0.9989 0.9989
0.0 105.0 101115 0.9995 0.9989 0.0013 0.9989 0.9989
0.0 106.0 102078 0.9995 0.9989 0.0011 0.9989 0.9989
0.0001 107.0 103041 0.9995 0.9989 0.0008 0.9989 0.9989
0.0001 108.0 104004 0.9996 0.9993 0.0008 0.9993 0.9993
0.0 109.0 104967 0.9996 0.9989 0.0009 0.9989 0.9989
0.0 110.0 105930 1.0 1.0 0.0000 1.0 1.0

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
4
Safetensors
Model size
114M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for opengl106/roberta-base-hangul-2-hanja

Base model

klue/roberta-base
Finetuned
(246)
this model