|
## How to Fine-tune DeepSeek-Coder |
|
|
|
We provide script `finetune_deepseekcoder.py` for users to finetune our models on downstream tasks. |
|
|
|
The script supports the training with [DeepSpeed](https://github.com/microsoft/DeepSpeed). You need install required packages by: |
|
|
|
```bash |
|
pip install -r requirements.txt |
|
``` |
|
|
|
Please follow [Sample Dataset Format](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) to prepare your training data. |
|
Each line is a json-serialized string with two required fields `instruction` and `output`. |
|
|
|
After data preparation, you can use the sample shell script to finetune `deepseek-ai/deepseek-coder-6.7b-instruct`. |
|
Remember to specify `DATA_PATH`, `OUTPUT_PATH`. |
|
And please choose appropriate hyper-parameters(e.g., `learning_rate`, `per_device_train_batch_size`) according to your scenario. |
|
|
|
```bash |
|
DATA_PATH="<your_data_path>" |
|
OUTPUT_PATH="<your_output_path>" |
|
MODEL_PATH="deepseek-ai/deepseek-coder-6.7b-instruct" |
|
|
|
deepspeed finetune_deepseekcoder.py \ |
|
--model_name_or_path $MODEL_PATH \ |
|
--data_path $DATA_PATH \ |
|
--output_dir $OUTPUT_PATH \ |
|
--num_train_epochs 3 \ |
|
--model_max_length 1024 \ |
|
--per_device_train_batch_size 16 \ |
|
--per_device_eval_batch_size 1 \ |
|
--gradient_accumulation_steps 4 \ |
|
--evaluation_strategy "no" \ |
|
--save_strategy "steps" \ |
|
--save_steps 100 \ |
|
--save_total_limit 100 \ |
|
--learning_rate 2e-5 \ |
|
--warmup_steps 10 \ |
|
--logging_steps 1 \ |
|
--lr_scheduler_type "cosine" \ |
|
--gradient_checkpointing True \ |
|
--report_to "tensorboard" \ |
|
--deepspeed configs/ds_config_zero3.json \ |
|
--bf16 True |
|
``` |