Red Hen Lab

community

AI & ML interests

Multimodal-communication

Recent Activity

RedHenLabs's activity

lucifertrj 
posted an update 14 days ago
view post
Post
486
Image Prompt Engineering Guide:
➡️ Artistic styling for Image generation
➡️ Prompt weighting using the parentheses method to generate realistic images.
➡️ Advanced features like style and positioning control[experimental].
➡️ Image placement on the generated AI image using Recraft V3 Mockup.

Watch: https://www.youtube.com/watch?v=d3nUG28-jIc
lucifertrj 
posted an update 3 months ago
view post
Post
1526
AI Agents LlamaIndex in 40 minutes

The video covers code and workflow explanations for:

- Function Calling
- Function Calling Agents + Agent Runner
- Agentic RAG
- REAcT Agent: Build your own Search Assistant Agent

Watch: https://youtu.be/bHn4dLJYIqE
lucifertrj 
posted an update 6 months ago
view post
Post
1695
Observability and Retrieval Augmented Generation in 10 lines of Code

Tutorial: https://www.youtube.com/watch?v=VCQ0Cw-GF2U

This video covers:
- Why we need observability?
- Implementation of RAG using BeyondLLM
- Monitor and Track LLM Observability using Phoenix
lucifertrj 
posted an update 7 months ago
view post
Post
2255
Advanced RAG - Hybrid Search using HuggingFace Models

Chat with PDF in 10 lines of code:

# pip install beyondllm
# pip install llama-index-embeddings-fastembed

from beyondllm import source,retrieve,embeddings,llms,generator
import os
from getpass import getpass
os.environ['HUGGINGFACE_ACCESS_TOKEN'] = getpass("Enter your HF API token:")

data = source.fit("sample.pdf", dtype="pdf")
embed_model = embeddings.FastEmbedEmbeddings()

retriever = auto_retriever(
    data=data, embed_model=embed_model,
    type="hybrid", top_k=5, mode="OR"
)

llm = HuggingFaceHubModel(model="mistralai/Mistral-7B-Instruct-v0.2")
pipeline = generator.Generate(question="<replace-with-your-query>",llm=llm,retriever=retriever)
print(pipeline.call())


Cookbook: https://github.com/aiplanethub/beyondllm/blob/main/cookbook/Implementing_Hybrid_Search.ipynb

Support the project by giving a ⭐️ to the repo
lucifertrj 
posted an update 7 months ago
view post
Post
1852
Evaluate RAG using Open Source from HuggingFace using BeyondLLM

# pip install beyondllm
# pip install huggingface_hub
# pip install llama-index-embeddings-fastembed

from beyondllm.source import fit
from beyondllm.embeddings import FastEmbedEmbeddings
from beyondllm.retrieve import auto_retriever
from beyondllm.llms import HuggingFaceHubModel
from beyondllm.generator import Generate

import os
from getpass import getpass
os.environ['HUGGINGFACE_ACCESS_TOKEN'] = getpass("Enter your HF API token:")

data = fit("RedHenLab_GSoC_Tarun.pdf",dtype="pdf")
embed_model = FastEmbedEmbeddings()
retriever = auto_retriever(data=data,embed_model=embed_model,type="normal",top_k=3)
llm = HuggingFaceHubModel(model="mistralai/Mistral-7B-Instruct-v0.2")
pipeline = Generate(question="what models has Tarun fine-tuned?",llm=llm,retriever=retriever)

print(pipeline.call()) # Return the AI response
print(pipeline.get_rag_triad_evals())


GitHub: https://github.com/aiplanethub/beyondllm

Don't forget to ⭐️ the repo
·