AI & ML interests

None defined yet.

Recent Activity

bigscience-catalogue-data's activity

davanstrien 
posted an update 5 days ago
view post
Post
1502
Introducing FineWeb-C 🌐🎓, a community-built dataset for improving language models in ALL languages.

Inspired by FineWeb-Edu the community is labelling the educational quality of texts for many languages.

318 annotators, 32K+ annotations, 12 languages - and growing! 🌍

data-is-better-together/fineweb-c
yjernite 
posted an update 12 days ago
view post
Post
2035
🇪🇺 Policy Thoughts in the EU AI Act Implementation 🇪🇺

There is a lot to like in the first draft of the EU GPAI Code of Practice, especially as regards transparency requirements. The Systemic Risks part, on the other hand, is concerning for both smaller developers and for external stakeholders.

I wrote more on this topic ahead of the next draft. TLDR: more attention to immediate large-scale risks and to collaborative solutions supported by evidence can help everyone - as long as developers disclose sufficient information about their design choices and deployment contexts.

Full blog here, based on our submitted response with @frimelle and @brunatrevelin :

https://huggingface.co/blog/yjernite/eu-draft-cop-risks#on-the-proposed-taxonomy-of-systemic-risks
  • 2 replies
·
lhoestq 
posted an update 12 days ago
view post
Post
1605
Made a HF Dataset editor a la gg sheets here: lhoestq/dataset-spreadsheets

With Dataset Spreadsheets:
✏️ Edit datasets in the UI
🔗 Share link with collaborators
🐍 Use locally in DuckDB or Python

Available for the 100,000+ parquet datasets on HF :)
christopher 
posted an update 17 days ago
view post
Post
1562
The folks at Foursquare released a dataset of 104.5 million places of interest ( foursquare/fsq-os-places) and here's all of them on a plot
·
christopher 
posted an update 19 days ago
davanstrien 
posted an update 26 days ago
view post
Post
485
Increasingly, LLMs are becoming very useful for helping scale annotation tasks, i.e. labelling and filtering. When combined with the structured generation, this can be a very scalable way of doing some pre-annotation without requiring a large team of human annotators.

However, there are quite a few cases where it still doesn't work well. This is a nice paper looking at the limitations of LLM as an annotator for Low Resource Languages: On Limitations of LLM as Annotator for Low Resource Languages (2411.17637).

Humans will still have an important role in the loop to help improve models for all languages (and domains).
davanstrien 
posted an update 29 days ago
view post
Post
2470
First dataset for the new Hugging Face Bluesky community organisation: bluesky-community/one-million-bluesky-posts 🦋

📊 1M public posts from Bluesky's firehose API
🔍 Includes text, metadata, and language predictions
🔬 Perfect to experiment with using ML for Bluesky 🤗

Excited to see people build more open tools for a more open social media platform!
davanstrien 
posted an update 29 days ago
view post
Post
1348
The Bluesky AT Protocol unlocks exciting possibilities:
- Building custom feeds using ML
- Creating dashboards for data exploration
- Developing custom models for Bluesky
To gather Bluesky resources on the Hub, I've created a community org: https://huggingface.co/bluesky-community

My first rather modest contribution is a dashboard that shows the number of posts every second. Drinking straight from the firehose API 🚰

bluesky-community/bluesky-posts-over-time
  • 1 reply
·
loubnabnl 
posted an update about 1 month ago
view post
Post
1632
Making SmolLM2 reproducible: open-sourcing our training & evaluation toolkit 🛠️ https://github.com/huggingface/smollm/

- Pre-training code with nanotron
- Evaluation suite with lighteval
- Synthetic data generation using distilabel (powers our new SFT dataset HuggingFaceTB/smoltalk)
- Post-training scripts with TRL & the alignment handbook
- On-device tools with llama.cpp for summarization, rewriting & agents

Apache 2.0 licensed. V2 pre-training data mix coming soon!

Which other tools should we add next?
davanstrien 
posted an update about 1 month ago
albertvillanova 
posted an update about 1 month ago
view post
Post
1382
🚨 How green is your model? 🌱 Introducing a new feature in the Comparator tool: Environmental Impact for responsible #LLM research!
👉 open-llm-leaderboard/comparator
Now, you can not only compare models by performance, but also by their environmental footprint!

🌍 The Comparator calculates CO₂ emissions during evaluation and shows key model characteristics: evaluation score, number of parameters, architecture, precision, type... 🛠️
Make informed decisions about your model's impact on the planet and join the movement towards greener AI!
albertvillanova 
posted an update about 2 months ago
view post
Post
1472
🚀 New feature of the Comparator of the 🤗 Open LLM Leaderboard: now compare models with their base versions & derivatives (finetunes, adapters, etc.). Perfect for tracking how adjustments affect performance & seeing innovations in action. Dive deeper into the leaderboard!

🛠️ Here's how to use it:
1. Select your model from the leaderboard.
2. Load its model tree.
3. Choose any base & derived models (adapters, finetunes, merges, quantizations) for comparison.
4. Press Load.
See side-by-side performance metrics instantly!

Ready to dive in? 🏆 Try the 🤗 Open LLM Leaderboard Comparator now! See how models stack up against their base versions and derivatives to understand fine-tuning and other adjustments. Easier model analysis for better insights! Check it out here: open-llm-leaderboard/comparator 🌐
davanstrien 
posted an update about 2 months ago
albertvillanova 
posted an update about 2 months ago
view post
Post
3116
🚀 Exciting update! You can now compare multiple models side-by-side with the Hugging Face Open LLM Comparator! 📊

open-llm-leaderboard/comparator

Dive into multi-model evaluations, pinpoint the best model for your needs, and explore insights across top open LLMs all in one place. Ready to level up your model comparison game?
albertvillanova 
posted an update 2 months ago
view post
Post
1221
🚨 Instruct-tuning impacts models differently across families! Qwen2.5-72B-Instruct excels on IFEval but struggles with MATH-Hard, while Llama-3.1-70B-Instruct avoids MATH performance loss! Why? Can they follow the format in examples? 📊 Compare models: open-llm-leaderboard/comparator
albertvillanova 
posted an update 2 months ago
view post
Post
1911
Finding the Best SmolLM for Your Project

Need an LLM assistant but unsure which hashtag#smolLM to run locally? With so many models available, how can you decide which one suits your needs best? 🤔

If the model you’re interested in is evaluated on the Hugging Face Open LLM Leaderboard, there’s an easy way to compare them: use the model Comparator tool: open-llm-leaderboard/comparator
Let’s walk through an example👇

Let’s compare two solid options:
- Qwen2.5-1.5B-Instruct from Alibaba Cloud Qwen (1.5B params)
- gemma-2-2b-it from Google (2.5B params)

For an assistant, you want a model that’s great at instruction following. So, how do these two models stack up on the IFEval task?

What about other evaluations?
Both models are close in performance on many other tasks, showing minimal differences. Surprisingly, the 1.5B Qwen model performs just as well as the 2.5B Gemma in many areas, even though it's smaller in size! 📊

This is a great example of how parameter size isn’t everything. With efficient design and training, a smaller model like Qwen2.5-1.5B can match or even surpass larger models in certain tasks.

Looking for other comparisons? Drop your model suggestions below! 👇
albertvillanova 
posted an update 2 months ago
view post
Post
1950
🚨 We’ve just released a new tool to compare the performance of models in the 🤗 Open LLM Leaderboard: the Comparator 🎉
open-llm-leaderboard/comparator

Want to see how two different versions of LLaMA stack up? Let’s walk through a step-by-step comparison of LLaMA-3.1 and LLaMA-3.2. 🦙🧵👇

1/ Load the Models' Results
- Go to the 🤗 Open LLM Leaderboard Comparator: open-llm-leaderboard/comparator
- Search for "LLaMA-3.1" and "LLaMA-3.2" in the model dropdowns.
- Press the Load button. Ready to dive into the results!

2/ Compare Metric Results in the Results Tab 📊
- Head over to the Results tab.
- Here, you’ll see the performance metrics for each model, beautifully color-coded using a gradient to highlight performance differences: greener is better! 🌟
- Want to focus on a specific task? Use the Task filter to hone in on comparisons for tasks like BBH or MMLU-Pro.

3/ Check Config Alignment in the Configs Tab ⚙️
- To ensure you’re comparing apples to apples, head to the Configs tab.
- Review both models’ evaluation configurations, such as metrics, datasets, prompts, few-shot configs...
- If something looks off, it’s good to know before drawing conclusions! ✅

4/ Compare Predictions by Sample in the Details Tab 🔍
- Curious about how each model responds to specific inputs? The Details tab is your go-to!
- Select a Task (e.g., MuSR) and then a Subtask (e.g., Murder Mystery) and then press the Load Details button.
- Check out the side-by-side predictions and dive into the nuances of each model’s outputs.

5/ With this tool, it’s never been easier to explore how small changes between model versions affect performance on a wide range of tasks. Whether you’re a researcher or enthusiast, you can instantly visualize improvements and dive into detailed comparisons.

🚀 Try the 🤗 Open LLM Leaderboard Comparator now and take your model evaluations to the next level!