🦾 Experience faster, lighter, and smarter language models! The new FastLlama makes Meta's LLaMA models work with smaller file sizes, lower system requirements, and higher performance. The model supports 8 languages, including English, German, and Spanish.
🤖 Built on the LLaMA 3.2-1B-Instruct model, fine-tuned with Hugging Face's SmolTalk and MetaMathQA-50k datasets, and powered by LoRA (Low-Rank Adaptation) for groundbreaking mathematical reasoning.
🎯The space handles documenting content from the input image along with standardized plain text. It includes adjustment tools with over 30 font styles, file formatting support for PDF and DOCX, textual alignments, font size adjustments, and line spacing modifications.
📄PDFs are rendered using the ReportLab software library toolkit.
Small Language Models Enthusiasts and GPU Poor oss enjoyers lets connect. Just created an organization which main target is to have fun with smaller models tuneable on consumer range GPUs, feel free to join and lets have some fun, much love ;3
I'm super excited to release my first open-source text dataset:
WorldScenario 20K is a novel dataset of 20,000 synthetically generated multi-stakeholder scenarios designed to simulate real-world decision-making processes. Each scenario explores a unique environmental, societal, or economic issue.
I used the brand new meta-llama/Llama-3.3-70B-Instruct model to generate this dataset and I put the dataset through some post processing to clean and evaluate the dataset for diversity.
I'd appreciate some feedback and thoughts on my new release! Thanks!
After some heated discussion 🔥, we clarify our intent re. storage limits on the Hub
TL;DR: - public storage is free, and (unless blatant abuse) unlimited. We do ask that you consider upgrading to PRO and/or Enterprise Hub if possible - private storage is paid above a significant free tier (1TB if you have a paid account, 100GB otherwise)
We applied the same data-driven approach that led to SOTA English performance in🍷 FineWeb to thousands of languages.
🥂 FineWeb2 has 8TB of compressed text data and outperforms other multilingual datasets in our experiments.
The dataset is released under the permissive 📜 ODC-By 1.0 license, and the 💻 code to reproduce it and our evaluations is public.
We will very soon announce a big community project, and are working on a 📝 blogpost walking you through the entire dataset creation process. Stay tuned!
🧪The datasets were prepared for a 3:2 aspect ratio by processing images of any dimension (width × height) in alignment with the adapter's concept. This involved using techniques such as magic expand, magic fill, or outpainting to adjust the remaining parts of the image to achieve the 3:2 ratio & posts training. This approach enhanced the desired image quality to up to 2 MB for detailed prompts and reduced artifacts in images sized at 1280 × 832.
🎈This approach was used instead of cropping down the 2x or 3x zoomed positions in the actual image. It generative filling to adjust the image's aspect ratio proportionally within the dataset.
🔧I used Canva's Magic Expand, Firefly's Generative Fill, and Flux's Outpaint for aspect ratio adjustments.
🌐 The Stanford Institute for Human-Centered AI (https://aiindex.stanford.edu/vibrancy/) has released its 2024 Global AI Vibrancy Tool, a way to explore and compare AI progress across 36 countries.
📊 It measures progress across the 8 broad pillars of R&D, Responsible AI, Economy, Education, Diversity, Policy and Governance, Public Opinion and Infrastructure. (Each of these pillars have a number of Sub Indices)
📈 As a whole it is not surprising that the USA was at the top in terms of overall score as of 2023 (AI investment activity is a large part of the economic pillar for example and that is a large part of the overall USA ranking) but drilling in to more STRATEGIC Macro pillars like Education, Infrastructure or R&D reveal interesting growth patterns in Asia (particularly China) and Western Europe that I suspect the 2024 metrics will bear out.
🤖 Hopefully the 2024 Global Vibrancy ranking will break out AI and ML verticals like Computer Vision or NLP and or the AI Agent space as that may also from a global macro level give indications of what is to come globally for AI in 2025.