osei1819's picture
End of training
561d5ea verified
metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: phishing_detection_fine_tuned_bert
    results: []

phishing_detection_fine_tuned_bert

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3343
  • Accuracy: 0.8565
  • F1: 0.8573
  • Precision: 0.8596
  • Recall: 0.8565

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.411 1.0 3622 0.3300 0.8222 0.8242 0.8509 0.8222
0.4471 2.0 7244 0.6779 0.8154 0.8067 0.8274 0.8154
0.6583 3.0 10866 0.6717 0.6079 0.4597 0.3695 0.6079
0.6286 4.0 14488 0.6698 0.6079 0.4597 0.3695 0.6079
0.6527 5.0 18110 0.6697 0.6079 0.4597 0.3695 0.6079
0.336 6.0 21732 0.4681 0.7707 0.7719 0.8293 0.7707
0.5686 7.0 25354 0.6242 0.5740 0.5518 0.7128 0.5740
0.334 8.0 28976 0.3666 0.8279 0.8298 0.8433 0.8279
0.4017 9.0 32598 0.3711 0.8571 0.8561 0.8564 0.8571
0.2285 10.0 36220 0.3343 0.8565 0.8573 0.8596 0.8565

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0