Model: DistilUSE
    Lang: IT
  
 

Model description

This is a Universal Sentence Encoder [1] model for the Italian language, obtained using mDistilUSE (distiluse-base-multilingual-cased-v1) as a starting point and focusing it on the Italian language by modifying the embedding layer (as in [2], computing document-level frequencies over the Wikipedia dataset)

The resulting model has 67M parameters, a vocabulary of 30.785 tokens, and a size of ~270 MB.

It can be used to encode Italian texts and compute similarities between them.

Quick usage

from transformers import AutoTokenizer, AutoModel
import numpy as np

tokenizer = AutoTokenizer.from_pretrained("osiria/distiluse-base-italian")
model = AutoModel.from_pretrained("osiria/distiluse-base-italian")

text1 = "Alessandro Manzoni Γ¨ stato uno scrittore italiano"
text2 = "Giacomo Leopardi Γ¨ stato un poeta italiano"

vec1 = model(tokenizer.encode(text1, return_tensors = "pt")).last_hidden_state[0,0,:].cpu().detach().numpy()
vec2 = model(tokenizer.encode(text2, return_tensors = "pt")).last_hidden_state[0,0,:].cpu().detach().numpy()

cosine_similarity = np.dot(vec1, vec2)/(np.linalg.norm(vec1)*np.linalg.norm(vec2))
print("COSINE SIMILARITY:", cosine_similarity)

# COSINE SIMILARITY: 0.734292

References

[1] https://arxiv.org/abs/1907.04307

[2] https://arxiv.org/abs/2010.05609

License

The model is released under Apache-2.0 license

Downloads last month
34
Safetensors
Model size
66.6M params
Tensor type
F32
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using osiria/distiluse-base-italian 1

Collection including osiria/distiluse-base-italian