BT5153-kaggle-sentiment-model-3000-samples

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6160
  • Accuracy: 0.9270
  • F1: 0.9288

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.2851 1.0 625 0.2058 0.9216 0.9231
0.1735 2.0 1250 0.2257 0.9244 0.9258
0.121 3.0 1875 0.2907 0.9232 0.9251
0.0525 4.0 2500 0.3607 0.9194 0.9219
0.0381 5.0 3125 0.4109 0.9216 0.9233
0.0257 6.0 3750 0.4142 0.9232 0.9244
0.0192 7.0 4375 0.4321 0.9230 0.9233
0.0126 8.0 5000 0.4745 0.9250 0.9278
0.01 9.0 5625 0.5053 0.9240 0.9246
0.0091 10.0 6250 0.5256 0.9240 0.9267
0.0062 11.0 6875 0.5798 0.9246 0.9255
0.0033 12.0 7500 0.5935 0.9242 0.9262
0.0019 13.0 8125 0.5891 0.9286 0.9303
0.0018 14.0 8750 0.6176 0.9266 0.9287
0.0001 15.0 9375 0.6160 0.9270 0.9288

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.0
  • Datasets 2.1.0
  • Tokenizers 0.13.2
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.