SetFit Polarity Model

This is a SetFit model that can be used for Aspect Based Sentiment Analysis (ABSA). A LogisticRegression instance is used for classification. In particular, this model is in charge of classifying aspect polarities.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

This model was trained within the context of a larger system for ABSA, which looks like so:

  1. Use a spaCy model to select possible aspect span candidates.
  2. Use a SetFit model to filter these possible aspect span candidates.
  3. Use this SetFit model to classify the filtered aspect span candidates.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
positive
  • 'air krispi dan ayam bakar:Warung Sunda murah meriah dan makanannya enak. Favorit selada air krispi dan ayam bakar'
  • 'Ayam bakar,sambel leunca:Ayam bakar,sambel leunca sambel terasi merah enak banget 9/10, perkedel jagung 8/10 makan pakai sambel mantap. Makan berdua sekitar 77k'
  • ',sambel leunca sambel terasi merah enak banget 9:Ayam bakar,sambel leunca sambel terasi merah enak banget 9/10, perkedel jagung 8/10 makan pakai sambel mantap. Makan berdua sekitar 77k'
negative
  • ', minus di menu tidak di cantumkan:Makanan biasa saja, minus di menu tidak di cantumkan harga. Posi nasi standar, kelebihan sambal sudah disediakan di mangkok. '
  • 'lebih diatur kah antriannya, kayanya pakai:It wasnt bad food at all. Tapi please mungkin bisa lebih diatur kah antriannya, kayanya pakai waiting list gak sesulit itu deh.'
  • 'rasanya standar. Harga bisa dibilang murah:Tahu tempe perkedel rasanya standar. Harga bisa dibilang murah. Kalau yang masih penasaran ya boleh dateng coba tapi menurut saya overall biasa saja, tidak nemu wah nya dimana..'

Evaluation

Metrics

Label Accuracy
all 0.8636

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import AbsaModel

# Download from the ๐Ÿค— Hub
model = AbsaModel.from_pretrained(
    "pahri/setfit-indo-resto-RM-ibu-imas-aspect",
    "pahri/setfit-indo-resto-RM-ibu-imas-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 7 35.3922 90
Label Training Sample Count
konflik 0
negatif 0
netral 0
positif 0

Training Hyperparameters

  • batch_size: (6, 6)
  • num_epochs: (1, 16)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: True
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0036 1 0.2676 -
0.1799 50 0.0064 -
0.3597 100 0.0015 -
0.5396 150 0.0007 -
0.7194 200 0.0005 -
0.8993 250 0.0006 -

Framework Versions

  • Python: 3.10.13
  • SetFit: 1.0.3
  • Sentence Transformers: 2.7.0
  • spaCy: 3.7.4
  • Transformers: 4.36.2
  • PyTorch: 2.1.2
  • Datasets: 2.18.0
  • Tokenizers: 0.15.2

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
12
Safetensors
Model size
568M params
Tensor type
F32
ยท
Inference Examples
Inference API (serverless) has been turned off for this model.

Space using pahri/setfit-indo-resto-RM-ibu-imas-polarity 1

Evaluation results