fakenews-mtl / README.md
pandrei7's picture
Set `library_name` to `tf-keras`. (#1)
89a669d verified
|
raw
history blame
963 Bytes
metadata
library_name: tf-keras

Model description

BERT-based model for classifying fake news written in Romanian.

Intended uses & limitations

It predicts one of six types of fake news (in order: "fabricated", "fictional", "plausible", "propaganda", "real", "satire").

It also predicts if the article talks about health or politics.

How to use the model

Load the model with:

from huggingface_hub import from_pretrained_keras

model = from_pretrained_keras("pandrei7/fakenews-mtl")

Use this tokenizer: readerbench/RoBERT-base.

The input length should be 512. You can tokenize the input like this:

tokenizer(
    your_text,
    padding="max_length",
    truncation=True,
    max_length=512,
    return_tensors="tf",
)

Training data

The model was trained and evaluated on the fakerom dataset.

Evaluation results

The accuracy of predicting fake news was roughly 75%.