Built with Axolotl

See axolotl config

axolotl version: 0.6.0

adapter: lora
base_model: NousResearch/Llama-3.2-1B
bf16: auto
dataset_prepared_path: last_run_prepared
datasets:
- path: teknium/GPT4-LLM-Cleaned
  type: alpaca
eval_sample_packing: true
evals_per_epoch: 4
flash_attention: true
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: pandyamarut/llama-fr-lora
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_r: 16
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
loss_watchdog_patience: 3
loss_watchdog_threshold: 5
lr_scheduler: cosine
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_8bit
output_dir: /runpod-volume/fine-tuning/test-run
pad_to_sequence_len: true
run_name: test-run
runpod_job_id: dd327f42-5f67-4830-b512-4561fa9a3d45-u1
sample_packing: true
saves_per_epoch: 1
sequence_len: 2048
special_tokens:
  pad_token: <|end_of_text|>
strict: false
tf32: false
train_on_inputs: false
val_set_size: 0.1
wandb_entity: axo-test
wandb_name: test-run-1
wandb_project: test-run-1
warmup_steps: 10
weight_decay: 0

llama-fr-lora

This model is a fine-tuned version of NousResearch/Llama-3.2-1B on the teknium/GPT4-LLM-Cleaned dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1018

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.4537 0.0009 1 1.3971
1.1978 0.2503 271 1.1561
1.1637 0.5007 542 1.1131
1.1894 0.7510 813 1.1018

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
15
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for pandyamarut/llama-fr-lora

Adapter
(298)
this model

Dataset used to train pandyamarut/llama-fr-lora