|
--- |
|
language: |
|
- en |
|
license: other |
|
library_name: transformers |
|
datasets: |
|
- psmathur/orca_mini_v1_dataset |
|
- ehartford/dolphin |
|
pipeline_tag: text-generation |
|
model-index: |
|
- name: orca_mini_v3_13b |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 63.14 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=psmathur/orca_mini_v3_13b |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 82.35 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=psmathur/orca_mini_v3_13b |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 56.52 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=psmathur/orca_mini_v3_13b |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 51.81 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=psmathur/orca_mini_v3_13b |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 76.48 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=psmathur/orca_mini_v3_13b |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 13.12 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=psmathur/orca_mini_v3_13b |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
# orca_mini_v3_13b |
|
|
|
A Llama2-13b model trained on Orca Style datasets. |
|
|
|
|
|
![orca-mini](https://huggingface.co/psmathur/orca_mini_v3_13b/resolve/main/orca_minis_small.jpeg) |
|
|
|
|
|
<strong> |
|
Passionate about AI? I help companies to privately train and deploy custom LLMs affordably. For startups, I can even assist with securing GPU grants to get you started. Let's chat! |
|
</strong> |
|
|
|
**[www.linkedin.com/in/pankajam](www.linkedin.com/in/pankajam) Looking forward to connecting!** |
|
|
|
|
|
|
|
### quantized versions |
|
|
|
Big thanks to [@TheBloke](https://huggingface.co/TheBloke) |
|
|
|
1) https://huggingface.co/TheBloke/orca_mini_v3_13B-GGML |
|
|
|
2) https://huggingface.co/TheBloke/orca_mini_v3_13B-GPTQ |
|
|
|
|
|
<br> |
|
|
|
#### license disclaimer: |
|
|
|
This model is bound by the license & usage restrictions of the original Llama-2 model. And comes with no warranty or gurantees of any kind. |
|
|
|
<br> |
|
|
|
## Evaluation |
|
|
|
We evaluated orca_mini_v3_13b on a wide range of tasks using [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) from EleutherAI. |
|
|
|
Here are the results on metrics used by [HuggingFaceH4 Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
|
|
||||| |
|
|:------:|:--------:|:-------:|:--------:| |
|
|**Task**|**Metric**|**Value**|**Stderr**| |
|
|*arc_challenge*|acc_norm|0.6314|0.0141| |
|
|*hellaswag*|acc_norm|0.8242|0.0038| |
|
|*mmlu*|acc_norm|0.5637|0.0351| |
|
|*truthfulqa_mc*|mc2|0.5127|0.0157| |
|
|**Total Average**|-|**0.6329877193**|| |
|
|
|
|
|
<br> |
|
|
|
## Example Usage |
|
|
|
Here is the prompt format |
|
|
|
``` |
|
### System: |
|
You are an AI assistant that follows instruction extremely well. Help as much as you can. |
|
|
|
### User: |
|
Tell me about Orcas. |
|
|
|
### Assistant: |
|
|
|
``` |
|
|
|
Below shows a code example on how to use this model |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("psmathur/orca_mini_v3_13b") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"psmathur/orca_mini_v3_13b", |
|
torch_dtype=torch.float16, |
|
load_in_8bit=True, |
|
low_cpu_mem_usage=True, |
|
device_map="auto" |
|
) |
|
system_prompt = "### System:\nYou are an AI assistant that follows instruction extremely well. Help as much as you can.\n\n" |
|
|
|
#generate text steps |
|
instruction = "Tell me about Orcas." |
|
prompt = f"{system_prompt}### User: {instruction}\n\n### Assistant:\n" |
|
inputs = tokenizer(prompt, return_tensors="pt").to("cuda") |
|
output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=4096) |
|
|
|
print(tokenizer.decode(output[0], skip_special_tokens=True)) |
|
|
|
``` |
|
|
|
<br> |
|
|
|
#### Limitations & Biases: |
|
|
|
While this model aims for accuracy, it can occasionally produce inaccurate or misleading results. |
|
|
|
Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content. |
|
|
|
Exercise caution and cross-check information when necessary. |
|
|
|
|
|
<br> |
|
|
|
### Citiation: |
|
|
|
Please kindly cite using the following BibTeX: |
|
|
|
``` |
|
@misc{orca_mini_v3_13b, |
|
author = {Pankaj Mathur}, |
|
title = {orca_mini_v3_13b: An Orca Style Llama2-70b model}, |
|
year = {2023}, |
|
publisher = {HuggingFace}, |
|
journal = {HuggingFace repository}, |
|
howpublished = {\url{https://https://huggingface.co/psmathur/orca_mini_v3_13b}, |
|
} |
|
``` |
|
|
|
``` |
|
@misc{mukherjee2023orca, |
|
title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4}, |
|
author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah}, |
|
year={2023}, |
|
eprint={2306.02707}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
``` |
|
@software{touvron2023llama2, |
|
title={Llama 2: Open Foundation and Fine-Tuned Chat Models}, |
|
author={Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, |
|
Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, |
|
Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, |
|
Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, |
|
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, |
|
Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu , Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, |
|
Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom}, |
|
year={2023} |
|
} |
|
``` |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_psmathur__orca_mini_v3_13b) |
|
|
|
| Metric | Value | |
|
|-----------------------|---------------------------| |
|
| Avg. | 52.23 | |
|
| ARC (25-shot) | 63.14 | |
|
| HellaSwag (10-shot) | 82.35 | |
|
| MMLU (5-shot) | 56.52 | |
|
| TruthfulQA (0-shot) | 51.81 | |
|
| Winogrande (5-shot) | 76.48 | |
|
| GSM8K (5-shot) | 13.12 | |
|
| DROP (3-shot) | 22.23 | |
|
|
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_psmathur__orca_mini_v3_13b) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |57.24| |
|
|AI2 Reasoning Challenge (25-Shot)|63.14| |
|
|HellaSwag (10-Shot) |82.35| |
|
|MMLU (5-Shot) |56.52| |
|
|TruthfulQA (0-shot) |51.81| |
|
|Winogrande (5-shot) |76.48| |
|
|GSM8k (5-shot) |13.12| |
|
|
|
|