datasets:
- psmathur/orca_minis_uncensored_dataset
language:
- en
library_name: transformers
orca_mini_v3_7b
A LLama2-7b model trained on Orca Style datasets.
I am actively seeking sponsorship and partnership opportunities. If you're interested, please connect with me at www.linkedin.com/in/pankajam.
Evaluation
We evaluated orca_mini_v3_7b on a wide range of tasks using Language Model Evaluation Harness from EleutherAI.
Here are the results on metrics used by HuggingFaceH4 Open LLM Leaderboard
Task | Metric | Value | Stderr |
arc_challenge | acc_norm | 0.5717 | 0.0145 |
hellaswag | acc_norm | 0.7966 | 0.0043 |
mmlu | acc_norm | 0.5234 | 0.035 |
truthfulqa_mc | mc2 | 0.5029 | 0.0156 |
Total Average | - | 0.59865 |
Example Usage
Here is prompt format
### System:
You are an AI assistant that follows instruction extremely well. Help as much as you can.
### User:
I want to build the best Large Language Model, Give me detail step by step instructions on how to do it?
### Assistant:
Below shows a code example on how to use this model
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("psmathur/orca_mini_v3_7b", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("psmathur/orca_mini_v3_7b", torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto")
system_prompt = "### System:\nYou are an AI assistant that follows instruction extremely well. Help as much as you can.\n\n"
#generate text steps
instruction = "Tell me about Orcas."
prompt = f"{system_prompt}### User: {instruction}\n\n### Assistant:\n"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=4096)
print(tokenizer.decode(output[0], skip_special_tokens=True))
Limitations & Biases:
While this model aims for accuracy, it can occasionally produce inaccurate or misleading results.
Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content.
Exercise caution and cross-check information when necessary.
Citiation:
Please kindly cite using the following BibTeX:
@misc{orca_mini_v3_7b,
author = {Pankaj Mathur},
title = {orca_mini_v3_7b: An explain tuned Llama2-7b model},
year = {2023},
publisher = {GitHub, HuggingFace},
journal = {GitHub repository, HuggingFace repository},
howpublished = {\url{https://https://huggingface.co/psmathur/orca_mini_v3_7b},
}
@misc{mukherjee2023orca,
title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
year={2023},
eprint={2306.02707},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@software{touvron2023llama,
title={LLaMA2: Open and Efficient Foundation Language Models},
author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume},
journal={arXiv preprint arXiv:2302.13971},
year={2023}
}