paolinox's picture
paolinox/mobilevit-FT-food101
b7f582f
metadata
license: other
base_model: apple/mobilevitv2-1.0-imagenet1k-256
tags:
  - generated_from_trainer
datasets:
  - food101
metrics:
  - accuracy
model-index:
  - name: mobilevit-finetuned-food101
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: food101
          type: food101
          config: default
          split: train[:5000]
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.874

mobilevit-finetuned-food101

This model is a fine-tuned version of apple/mobilevitv2-1.0-imagenet1k-256 on the food101 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4191
  • Accuracy: 0.874

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.9487 0.98 23 1.9476 0.151
1.9273 2.0 47 1.9070 0.24
1.8561 2.98 70 1.8401 0.448
1.7788 4.0 94 1.7301 0.612
1.6586 4.98 117 1.5863 0.676
1.4603 6.0 141 1.4199 0.72
1.3027 6.98 164 1.2215 0.734
1.1717 8.0 188 1.0581 0.759
0.9601 8.98 211 0.9013 0.769
0.8482 10.0 235 0.7866 0.791
0.7276 10.98 258 0.7112 0.803
0.6449 12.0 282 0.6132 0.835
0.6279 12.98 305 0.6069 0.83
0.5982 14.0 329 0.5637 0.832
0.5766 14.98 352 0.5149 0.857
0.5345 16.0 376 0.5392 0.837
0.494 16.98 399 0.5017 0.848
0.4953 18.0 423 0.5002 0.846
0.5118 18.98 446 0.4782 0.856
0.4708 20.0 470 0.4898 0.858
0.4774 20.98 493 0.4769 0.851
0.4848 22.0 517 0.4665 0.841
0.4533 22.98 540 0.4890 0.837
0.4449 24.0 564 0.4558 0.857
0.4205 24.98 587 0.4767 0.857
0.4417 26.0 611 0.4476 0.853
0.4333 26.98 634 0.4853 0.834
0.4545 28.0 658 0.4573 0.847
0.4489 28.98 681 0.4659 0.845
0.4172 29.36 690 0.4191 0.874

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0