Whisper Base Ta - Bharat Ramanathan

This model is a fine-tuned version of openai/whisper-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2269
  • Wer: 21.7243

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5559 0.1 1000 0.3963 35.3308
0.3891 0.2 2000 0.3146 29.1511
0.3425 0.3 3000 0.2834 25.5930
0.3108 0.1 4000 0.2669 24.7191
0.2866 0.1 5000 0.2596 25.0936
0.2697 0.2 6000 0.2507 24.5943
0.2421 0.05 6500 0.2411 23.0395
0.2425 0.1 7000 0.2370 23.3804
0.2404 0.15 7500 0.2333 22.7959
0.2381 0.2 8000 0.2311 22.9420
0.2429 0.25 8500 0.2305 22.0166
0.2402 0.3 9000 0.2284 22.1140
0.2377 0.35 9500 0.2271 22.0653
0.2389 0.4 10000 0.2269 21.7243

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using parambharat/whisper-base-ta 1

Evaluation results