Whisper Small Ta - Bharat Ramanathan

This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1803
  • Wer: 17.1456

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3374 0.1 500 0.2579 23.3804
0.29 0.2 1000 0.2260 20.9937
0.2522 0.3 1500 0.2139 20.0682
0.2338 0.4 2000 0.2025 19.6785
0.223 0.5 2500 0.1979 18.3147
0.211 0.6 3000 0.1927 17.8276
0.2032 0.7 3500 0.1865 17.3892
0.1978 0.8 4000 0.1839 17.5353
0.1972 0.9 4500 0.1812 17.0969
0.1894 1.0 5000 0.1803 17.1456

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
23
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Spaces using parambharat/whisper-small-ta 2

Evaluation results