This model is a merged version of [parlance-labs/hc-mistral-alpaca](https://huggingface.co/parlance-labs/hc-mistral-alpaca) | |
## Usage | |
You can use this model with the following code: | |
First, download the model | |
```python | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
model_id='parlance-labs/hc-mistral-alpaca-merged' | |
model = AutoModelForCausalLM.from_pretrained(model_id).cuda() | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
tokenizer.pad_token = tokenizer.eos_token | |
``` | |
Define helper functions | |
```python | |
def prompt(nlq, cols): | |
return f"""Honeycomb is an observability platform that allows you to write queries to inspect trace data. You are an assistant that takes a natural language query (NLQ) and a list of valid columns and produce a Honeycomb query. | |
### Instruction: | |
NLQ: "{nlq}" | |
Columns: {cols} | |
### Response: | |
""" | |
def prompt_tok(nlq, cols): | |
_p = prompt(nlq, cols) | |
input_ids = tokenizer(_p, return_tensors="pt", truncation=True).input_ids.cuda() | |
out_ids = model.generate(input_ids=input_ids, max_new_tokens=5000, | |
do_sample=False) | |
return tokenizer.batch_decode(out_ids.detach().cpu().numpy(), | |
skip_special_tokens=True)[0][len(_p):] | |
``` | |
Get predictions | |
```python | |
nlq = "Exception count by exception and caller" | |
cols = ['error', 'exception.message', 'exception.type', 'exception.stacktrace', 'SampleRate', 'name', 'db.user', 'type', 'duration_ms', 'db.name', 'service.name', 'http.method', 'db.system', 'status_code', 'db.operation', 'library.name', 'process.pid', 'net.transport', 'messaging.system', 'rpc.system', 'http.target', 'db.statement', 'library.version', 'status_message', 'parent_name', 'aws.region', 'process.command', 'rpc.method', 'span.kind', 'serializer.name', 'net.peer.name', 'rpc.service', 'http.scheme', 'process.runtime.name', 'serializer.format', 'serializer.renderer', 'net.peer.port', 'process.runtime.version', 'http.status_code', 'telemetry.sdk.language', 'trace.parent_id', 'process.runtime.description', 'span.num_events', 'messaging.destination', 'net.peer.ip', 'trace.trace_id', 'telemetry.instrumentation_library', 'trace.span_id', 'span.num_links', 'meta.signal_type', 'http.route'] | |
# print prediction | |
out = prompt_tok(nlq, cols) | |
print(nlq, '\n', out) | |
``` | |