metadata
language: en
datasets:
- librispeech_asr
tags:
- audio
- automatic-speech-recognition
- hf-asr-leaderboard
license: apache-2.0
widget:
- example_title: Librispeech sample 1
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
- example_title: Librispeech sample 2
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
model-index:
- name: patrickvonplaten/wav2vec2-large-960h-lv60-self-4-gram
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: LibriSpeech (clean)
type: librispeech_asr
config: clean
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 1.84
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: LibriSpeech (other)
type: librispeech_asr
config: other
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 3.71
Wav2Vec2-Large-960h + 4-gram
This model is identical to Facebook's Wav2Vec2-Large-960h-lv60-self, but is
augmented with an English 4-gram. The 4-gram.arpa.gz
of Librispeech's official ngrams is used.
Evaluation
This code snippet shows how to evaluate patrickvonplaten/wav2vec2-large-960h-lv60-self-4-gram on LibriSpeech's "clean" and "other" test data.
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torch
from jiwer import wer
model_id = "patrickvonplaten/wav2vec2-large-960h-lv60-self-4-gram"
librispeech_eval = load_dataset("librispeech_asr", "other", split="test")
model = AutoModelForCTC.from_pretrained(model_id).to("cuda")
processor = AutoProcessor.from_pretrained(model_id)
def map_to_pred(batch):
inputs = processor(batch["audio"]["array"], sampling_rate=16_000, return_tensors="pt")
inputs = {k: v.to("cuda") for k,v in inputs.items()}
with torch.no_grad():
logits = model(**inputs).logits
transcription = processor.batch_decode(logits.cpu().numpy()).text[0]
batch["transcription"] = transcription
return batch
result = librispeech_eval.map(map_to_pred, remove_columns=["audio"])
print(wer(result["text"], result["transcription"]))
Result (WER):
"clean" | "other" |
---|---|
1.84 | 3.71 |