|
# Deep Layer Aggregation |
|
|
|
Extending “shallow” skip connections, **Dense Layer Aggregation (DLA)** incorporates more depth and sharing. The authors introduce two structures for deep layer aggregation (DLA): iterative deep aggregation (IDA) and hierarchical deep aggregation (HDA). These structures are expressed through an architectural framework, independent of the choice of backbone, for compatibility with current and future networks. |
|
|
|
IDA focuses on fusing resolutions and scales while HDA focuses on merging features from all modules and channels. IDA follows the base hierarchy to refine resolution and aggregate scale stage-bystage. HDA assembles its own hierarchy of tree-structured connections that cross and merge stages to aggregate different levels of representation. |
|
|
|
## How do I use this model on an image? |
|
|
|
To load a pretrained model: |
|
|
|
```py |
|
>>> import timm |
|
>>> model = timm.create_model('dla102', pretrained=True) |
|
>>> model.eval() |
|
``` |
|
|
|
To load and preprocess the image: |
|
|
|
```py |
|
>>> import urllib |
|
>>> from PIL import Image |
|
>>> from timm.data import resolve_data_config |
|
>>> from timm.data.transforms_factory import create_transform |
|
|
|
>>> config = resolve_data_config({}, model=model) |
|
>>> transform = create_transform(**config) |
|
|
|
>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") |
|
>>> urllib.request.urlretrieve(url, filename) |
|
>>> img = Image.open(filename).convert('RGB') |
|
>>> tensor = transform(img).unsqueeze(0) |
|
``` |
|
|
|
To get the model predictions: |
|
|
|
```py |
|
>>> import torch |
|
>>> with torch.no_grad(): |
|
... out = model(tensor) |
|
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0) |
|
>>> print(probabilities.shape) |
|
>>> |
|
``` |
|
|
|
To get the top-5 predictions class names: |
|
|
|
```py |
|
>>> |
|
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") |
|
>>> urllib.request.urlretrieve(url, filename) |
|
>>> with open("imagenet_classes.txt", "r") as f: |
|
... categories = [s.strip() for s in f.readlines()] |
|
|
|
>>> |
|
>>> top5_prob, top5_catid = torch.topk(probabilities, 5) |
|
>>> for i in range(top5_prob.size(0)): |
|
... print(categories[top5_catid[i]], top5_prob[i].item()) |
|
>>> |
|
>>> |
|
``` |
|
|
|
Replace the model name with the variant you want to use, e.g. `dla102`. You can find the IDs in the model summaries at the top of this page. |
|
|
|
To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. |
|
|
|
## How do I finetune this model? |
|
|
|
You can finetune any of the pre-trained models just by changing the classifier (the last layer). |
|
|
|
```py |
|
>>> model = timm.create_model('dla102', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) |
|
``` |
|
To finetune on your own dataset, you have to write a training loop or adapt [timm's training |
|
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. |
|
|
|
## How do I train this model? |
|
|
|
You can follow the [timm recipe scripts](../scripts) for training a new model afresh. |
|
|
|
## Citation |
|
|
|
```BibTeX |
|
@misc{yu2019deep, |
|
title={Deep Layer Aggregation}, |
|
author={Fisher Yu and Dequan Wang and Evan Shelhamer and Trevor Darrell}, |
|
year={2019}, |
|
eprint={1707.06484}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
``` |
|
|
|
<!-- |
|
Type: model-index |
|
Collections: |
|
- Name: DLA |
|
Paper: |
|
Title: Deep Layer Aggregation |
|
URL: https://paperswithcode.com/paper/deep-layer-aggregation |
|
Models: |
|
- Name: dla102 |
|
In Collection: DLA |
|
Metadata: |
|
FLOPs: 7192952808 |
|
Parameters: 33270000 |
|
File Size: 135290579 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Batch Normalization |
|
- Convolution |
|
- DLA Bottleneck Residual Block |
|
- DLA Residual Block |
|
- Global Average Pooling |
|
- Max Pooling |
|
- ReLU |
|
- Residual Block |
|
- Residual Connection |
|
- Softmax |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
Training Resources: 8x GPUs |
|
ID: dla102 |
|
LR: 0.1 |
|
Epochs: 120 |
|
Layers: 102 |
|
Crop Pct: '0.875' |
|
Momentum: 0.9 |
|
Batch Size: 256 |
|
Image Size: '224' |
|
Weight Decay: 0.0001 |
|
Interpolation: bilinear |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L410 |
|
Weights: http://dl.yf.io/dla/models/imagenet/dla102-d94d9790.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 78.03% |
|
Top 5 Accuracy: 93.95% |
|
- Name: dla102x |
|
In Collection: DLA |
|
Metadata: |
|
FLOPs: 5886821352 |
|
Parameters: 26310000 |
|
File Size: 107552695 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Batch Normalization |
|
- Convolution |
|
- DLA Bottleneck Residual Block |
|
- DLA Residual Block |
|
- Global Average Pooling |
|
- Max Pooling |
|
- ReLU |
|
- Residual Block |
|
- Residual Connection |
|
- Softmax |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
Training Resources: 8x GPUs |
|
ID: dla102x |
|
LR: 0.1 |
|
Epochs: 120 |
|
Layers: 102 |
|
Crop Pct: '0.875' |
|
Momentum: 0.9 |
|
Batch Size: 256 |
|
Image Size: '224' |
|
Weight Decay: 0.0001 |
|
Interpolation: bilinear |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L418 |
|
Weights: http://dl.yf.io/dla/models/imagenet/dla102x-ad62be81.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 78.51% |
|
Top 5 Accuracy: 94.23% |
|
- Name: dla102x2 |
|
In Collection: DLA |
|
Metadata: |
|
FLOPs: 9343847400 |
|
Parameters: 41280000 |
|
File Size: 167645295 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Batch Normalization |
|
- Convolution |
|
- DLA Bottleneck Residual Block |
|
- DLA Residual Block |
|
- Global Average Pooling |
|
- Max Pooling |
|
- ReLU |
|
- Residual Block |
|
- Residual Connection |
|
- Softmax |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
Training Resources: 8x GPUs |
|
ID: dla102x2 |
|
LR: 0.1 |
|
Epochs: 120 |
|
Layers: 102 |
|
Crop Pct: '0.875' |
|
Momentum: 0.9 |
|
Batch Size: 256 |
|
Image Size: '224' |
|
Weight Decay: 0.0001 |
|
Interpolation: bilinear |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L426 |
|
Weights: http://dl.yf.io/dla/models/imagenet/dla102x2-262837b6.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 79.44% |
|
Top 5 Accuracy: 94.65% |
|
- Name: dla169 |
|
In Collection: DLA |
|
Metadata: |
|
FLOPs: 11598004200 |
|
Parameters: 53390000 |
|
File Size: 216547113 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Batch Normalization |
|
- Convolution |
|
- DLA Bottleneck Residual Block |
|
- DLA Residual Block |
|
- Global Average Pooling |
|
- Max Pooling |
|
- ReLU |
|
- Residual Block |
|
- Residual Connection |
|
- Softmax |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
Training Resources: 8x GPUs |
|
ID: dla169 |
|
LR: 0.1 |
|
Epochs: 120 |
|
Layers: 169 |
|
Crop Pct: '0.875' |
|
Momentum: 0.9 |
|
Batch Size: 256 |
|
Image Size: '224' |
|
Weight Decay: 0.0001 |
|
Interpolation: bilinear |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L434 |
|
Weights: http://dl.yf.io/dla/models/imagenet/dla169-0914e092.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 78.69% |
|
Top 5 Accuracy: 94.33% |
|
- Name: dla34 |
|
In Collection: DLA |
|
Metadata: |
|
FLOPs: 3070105576 |
|
Parameters: 15740000 |
|
File Size: 63228658 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Batch Normalization |
|
- Convolution |
|
- DLA Bottleneck Residual Block |
|
- DLA Residual Block |
|
- Global Average Pooling |
|
- Max Pooling |
|
- ReLU |
|
- Residual Block |
|
- Residual Connection |
|
- Softmax |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
ID: dla34 |
|
LR: 0.1 |
|
Epochs: 120 |
|
Layers: 32 |
|
Crop Pct: '0.875' |
|
Momentum: 0.9 |
|
Batch Size: 256 |
|
Image Size: '224' |
|
Weight Decay: 0.0001 |
|
Interpolation: bilinear |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L362 |
|
Weights: http://dl.yf.io/dla/models/imagenet/dla34-ba72cf86.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 74.62% |
|
Top 5 Accuracy: 92.06% |
|
- Name: dla46_c |
|
In Collection: DLA |
|
Metadata: |
|
FLOPs: 583277288 |
|
Parameters: 1300000 |
|
File Size: 5307963 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Batch Normalization |
|
- Convolution |
|
- DLA Bottleneck Residual Block |
|
- DLA Residual Block |
|
- Global Average Pooling |
|
- Max Pooling |
|
- ReLU |
|
- Residual Block |
|
- Residual Connection |
|
- Softmax |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
ID: dla46_c |
|
LR: 0.1 |
|
Epochs: 120 |
|
Layers: 46 |
|
Crop Pct: '0.875' |
|
Momentum: 0.9 |
|
Batch Size: 256 |
|
Image Size: '224' |
|
Weight Decay: 0.0001 |
|
Interpolation: bilinear |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L369 |
|
Weights: http://dl.yf.io/dla/models/imagenet/dla46_c-2bfd52c3.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 64.87% |
|
Top 5 Accuracy: 86.29% |
|
- Name: dla46x_c |
|
In Collection: DLA |
|
Metadata: |
|
FLOPs: 544052200 |
|
Parameters: 1070000 |
|
File Size: 4387641 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Batch Normalization |
|
- Convolution |
|
- DLA Bottleneck Residual Block |
|
- DLA Residual Block |
|
- Global Average Pooling |
|
- Max Pooling |
|
- ReLU |
|
- Residual Block |
|
- Residual Connection |
|
- Softmax |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
ID: dla46x_c |
|
LR: 0.1 |
|
Epochs: 120 |
|
Layers: 46 |
|
Crop Pct: '0.875' |
|
Momentum: 0.9 |
|
Batch Size: 256 |
|
Image Size: '224' |
|
Weight Decay: 0.0001 |
|
Interpolation: bilinear |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L378 |
|
Weights: http://dl.yf.io/dla/models/imagenet/dla46x_c-d761bae7.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 65.98% |
|
Top 5 Accuracy: 86.99% |
|
- Name: dla60 |
|
In Collection: DLA |
|
Metadata: |
|
FLOPs: 4256251880 |
|
Parameters: 22040000 |
|
File Size: 89560235 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Batch Normalization |
|
- Convolution |
|
- DLA Bottleneck Residual Block |
|
- DLA Residual Block |
|
- Global Average Pooling |
|
- Max Pooling |
|
- ReLU |
|
- Residual Block |
|
- Residual Connection |
|
- Softmax |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
ID: dla60 |
|
LR: 0.1 |
|
Epochs: 120 |
|
Layers: 60 |
|
Dropout: 0.2 |
|
Crop Pct: '0.875' |
|
Momentum: 0.9 |
|
Batch Size: 256 |
|
Image Size: '224' |
|
Weight Decay: 0.0001 |
|
Interpolation: bilinear |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L394 |
|
Weights: http://dl.yf.io/dla/models/imagenet/dla60-24839fc4.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 77.04% |
|
Top 5 Accuracy: 93.32% |
|
- Name: dla60_res2net |
|
In Collection: DLA |
|
Metadata: |
|
FLOPs: 4147578504 |
|
Parameters: 20850000 |
|
File Size: 84886593 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Batch Normalization |
|
- Convolution |
|
- DLA Bottleneck Residual Block |
|
- DLA Residual Block |
|
- Global Average Pooling |
|
- Max Pooling |
|
- ReLU |
|
- Residual Block |
|
- Residual Connection |
|
- Softmax |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
ID: dla60_res2net |
|
Layers: 60 |
|
Crop Pct: '0.875' |
|
Image Size: '224' |
|
Interpolation: bilinear |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L346 |
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net_dla60_4s-d88db7f9.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 78.46% |
|
Top 5 Accuracy: 94.21% |
|
- Name: dla60_res2next |
|
In Collection: DLA |
|
Metadata: |
|
FLOPs: 3485335272 |
|
Parameters: 17030000 |
|
File Size: 69639245 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Batch Normalization |
|
- Convolution |
|
- DLA Bottleneck Residual Block |
|
- DLA Residual Block |
|
- Global Average Pooling |
|
- Max Pooling |
|
- ReLU |
|
- Residual Block |
|
- Residual Connection |
|
- Softmax |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
ID: dla60_res2next |
|
Layers: 60 |
|
Crop Pct: '0.875' |
|
Image Size: '224' |
|
Interpolation: bilinear |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L354 |
|
Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2next_dla60_4s-d327927b.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 78.44% |
|
Top 5 Accuracy: 94.16% |
|
- Name: dla60x |
|
In Collection: DLA |
|
Metadata: |
|
FLOPs: 3544204264 |
|
Parameters: 17350000 |
|
File Size: 70883139 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Batch Normalization |
|
- Convolution |
|
- DLA Bottleneck Residual Block |
|
- DLA Residual Block |
|
- Global Average Pooling |
|
- Max Pooling |
|
- ReLU |
|
- Residual Block |
|
- Residual Connection |
|
- Softmax |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
ID: dla60x |
|
LR: 0.1 |
|
Epochs: 120 |
|
Layers: 60 |
|
Crop Pct: '0.875' |
|
Momentum: 0.9 |
|
Batch Size: 256 |
|
Image Size: '224' |
|
Weight Decay: 0.0001 |
|
Interpolation: bilinear |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L402 |
|
Weights: http://dl.yf.io/dla/models/imagenet/dla60x-d15cacda.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 78.25% |
|
Top 5 Accuracy: 94.02% |
|
- Name: dla60x_c |
|
In Collection: DLA |
|
Metadata: |
|
FLOPs: 593325032 |
|
Parameters: 1320000 |
|
File Size: 5454396 |
|
Architecture: |
|
- 1x1 Convolution |
|
- Batch Normalization |
|
- Convolution |
|
- DLA Bottleneck Residual Block |
|
- DLA Residual Block |
|
- Global Average Pooling |
|
- Max Pooling |
|
- ReLU |
|
- Residual Block |
|
- Residual Connection |
|
- Softmax |
|
Tasks: |
|
- Image Classification |
|
Training Techniques: |
|
- SGD with Momentum |
|
- Weight Decay |
|
Training Data: |
|
- ImageNet |
|
ID: dla60x_c |
|
LR: 0.1 |
|
Epochs: 120 |
|
Layers: 60 |
|
Crop Pct: '0.875' |
|
Momentum: 0.9 |
|
Batch Size: 256 |
|
Image Size: '224' |
|
Weight Decay: 0.0001 |
|
Interpolation: bilinear |
|
Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L386 |
|
Weights: http://dl.yf.io/dla/models/imagenet/dla60x_c-b870c45c.pth |
|
Results: |
|
- Task: Image Classification |
|
Dataset: ImageNet |
|
Metrics: |
|
Top 1 Accuracy: 67.91% |
|
Top 5 Accuracy: 88.42% |
|
--> |