pengdadaaa's picture
Upload 741 files
786f6a6 verified
raw
history blame
26.1 kB
"""Run tests for all models
Tests that run on CI should have a specific marker, e.g. @pytest.mark.base. This
marker is used to parallelize the CI runs, with one runner for each marker.
If new tests are added, ensure that they use one of the existing markers
(documented in pyproject.toml > pytest > markers) or that a new marker is added
for this set of tests. If using a new marker, adjust the test matrix in
.github/workflows/tests.yml to run tests with this new marker, otherwise the
tests will be skipped on CI.
"""
import pytest
import torch
import platform
import os
import fnmatch
_IS_MAC = platform.system() == 'Darwin'
try:
from torchvision.models.feature_extraction import create_feature_extractor, get_graph_node_names, NodePathTracer
has_fx_feature_extraction = True
except ImportError:
has_fx_feature_extraction = False
import timm
from timm import list_models, create_model, set_scriptable, get_pretrained_cfg_value
from timm.layers import Format, get_spatial_dim, get_channel_dim
from timm.models import get_notrace_modules, get_notrace_functions
import importlib
import os
torch_backend = os.environ.get('TORCH_BACKEND')
if torch_backend is not None:
importlib.import_module(torch_backend)
torch_device = os.environ.get('TORCH_DEVICE', 'cpu')
timeout = os.environ.get('TIMEOUT')
timeout120 = int(timeout) if timeout else 120
timeout300 = int(timeout) if timeout else 300
if hasattr(torch._C, '_jit_set_profiling_executor'):
# legacy executor is too slow to compile large models for unit tests
# no need for the fusion performance here
torch._C._jit_set_profiling_executor(True)
torch._C._jit_set_profiling_mode(False)
# models with forward_intermediates() and support for FeatureGetterNet features_only wrapper
FEAT_INTER_FILTERS = [
'vit_*', 'twins_*', 'deit*', 'beit*', 'mvitv2*', 'eva*', 'samvit_*', 'flexivit*',
'cait_*', 'xcit_*', 'volo_*',
]
# transformer / hybrid models don't support full set of spatial / feature APIs and/or have spatial output.
NON_STD_FILTERS = [
'vit_*', 'tnt_*', 'pit_*', 'coat_*', 'cait_*', '*mixer_*', 'gmlp_*', 'resmlp_*', 'twins_*',
'convit_*', 'levit*', 'visformer*', 'deit*', 'xcit_*', 'crossvit_*', 'beit*',
'poolformer_*', 'volo_*', 'sequencer2d_*', 'mvitv2*', 'gcvit*', 'efficientformer*',
'eva_*', 'flexivit*', 'eva02*', 'samvit_*', 'efficientvit_m*', 'tiny_vit_*'
]
NUM_NON_STD = len(NON_STD_FILTERS)
# exclude models that cause specific test failures
if 'GITHUB_ACTIONS' in os.environ:
# GitHub Linux runner is slower and hits memory limits sooner than MacOS, exclude bigger models
EXCLUDE_FILTERS = [
'*efficientnet_l2*', '*resnext101_32x48d', '*in21k', '*152x4_bitm', '*101x3_bitm', '*50x3_bitm',
'*nfnet_f3*', '*nfnet_f4*', '*nfnet_f5*', '*nfnet_f6*', '*nfnet_f7*', '*efficientnetv2_xl*',
'*resnetrs350*', '*resnetrs420*', 'xcit_large_24_p8*', '*huge*', '*giant*', '*gigantic*',
'*enormous*', 'maxvit_xlarge*', 'regnet*1280', 'regnet*2560']
NON_STD_EXCLUDE_FILTERS = ['*huge*', '*giant*', '*gigantic*', '*enormous*']
else:
EXCLUDE_FILTERS = ['*enormous*']
NON_STD_EXCLUDE_FILTERS = ['*gigantic*', '*enormous*']
EXCLUDE_JIT_FILTERS = []
TARGET_FWD_SIZE = MAX_FWD_SIZE = 384
TARGET_BWD_SIZE = 128
MAX_BWD_SIZE = 320
MAX_FWD_OUT_SIZE = 448
TARGET_JIT_SIZE = 128
MAX_JIT_SIZE = 320
TARGET_FFEAT_SIZE = 96
MAX_FFEAT_SIZE = 256
TARGET_FWD_FX_SIZE = 128
MAX_FWD_FX_SIZE = 256
TARGET_BWD_FX_SIZE = 128
MAX_BWD_FX_SIZE = 224
def _get_input_size(model=None, model_name='', target=None):
if model is None:
assert model_name, "One of model or model_name must be provided"
input_size = get_pretrained_cfg_value(model_name, 'input_size')
fixed_input_size = get_pretrained_cfg_value(model_name, 'fixed_input_size')
min_input_size = get_pretrained_cfg_value(model_name, 'min_input_size')
else:
default_cfg = model.default_cfg
input_size = default_cfg['input_size']
fixed_input_size = default_cfg.get('fixed_input_size', None)
min_input_size = default_cfg.get('min_input_size', None)
assert input_size is not None
if fixed_input_size:
return input_size
if min_input_size:
if target and max(input_size) > target:
input_size = min_input_size
else:
if target and max(input_size) > target:
input_size = tuple([min(x, target) for x in input_size])
return input_size
@pytest.mark.base
@pytest.mark.timeout(timeout120)
@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS))
@pytest.mark.parametrize('batch_size', [1])
def test_model_forward(model_name, batch_size):
"""Run a single forward pass with each model"""
model = create_model(model_name, pretrained=False)
model.eval()
input_size = _get_input_size(model=model, target=TARGET_FWD_SIZE)
if max(input_size) > MAX_FWD_SIZE:
pytest.skip("Fixed input size model > limit.")
inputs = torch.randn((batch_size, *input_size))
inputs = inputs.to(torch_device)
model.to(torch_device)
outputs = model(inputs)
assert outputs.shape[0] == batch_size
assert not torch.isnan(outputs).any(), 'Output included NaNs'
@pytest.mark.base
@pytest.mark.timeout(timeout120)
@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS, name_matches_cfg=True))
@pytest.mark.parametrize('batch_size', [2])
def test_model_backward(model_name, batch_size):
"""Run a single forward pass with each model"""
input_size = _get_input_size(model_name=model_name, target=TARGET_BWD_SIZE)
if max(input_size) > MAX_BWD_SIZE:
pytest.skip("Fixed input size model > limit.")
model = create_model(model_name, pretrained=False, num_classes=42)
num_params = sum([x.numel() for x in model.parameters()])
model.train()
inputs = torch.randn((batch_size, *input_size))
inputs = inputs.to(torch_device)
model.to(torch_device)
outputs = model(inputs)
if isinstance(outputs, tuple):
outputs = torch.cat(outputs)
outputs.mean().backward()
for n, x in model.named_parameters():
assert x.grad is not None, f'No gradient for {n}'
num_grad = sum([x.grad.numel() for x in model.parameters() if x.grad is not None])
assert outputs.shape[-1] == 42
assert num_params == num_grad, 'Some parameters are missing gradients'
assert not torch.isnan(outputs).any(), 'Output included NaNs'
@pytest.mark.cfg
@pytest.mark.timeout(timeout300)
@pytest.mark.parametrize('model_name', list_models(
exclude_filters=EXCLUDE_FILTERS + NON_STD_FILTERS, include_tags=True))
@pytest.mark.parametrize('batch_size', [1])
def test_model_default_cfgs(model_name, batch_size):
"""Run a single forward pass with each model"""
model = create_model(model_name, pretrained=False)
model.eval()
model.to(torch_device)
state_dict = model.state_dict()
cfg = model.default_cfg
pool_size = cfg['pool_size']
input_size = model.default_cfg['input_size']
output_fmt = getattr(model, 'output_fmt', 'NCHW')
spatial_axis = get_spatial_dim(output_fmt)
assert len(spatial_axis) == 2 # TODO add 1D sequence support
feat_axis = get_channel_dim(output_fmt)
if all([x <= MAX_FWD_OUT_SIZE for x in input_size]) and \
not any([fnmatch.fnmatch(model_name, x) for x in EXCLUDE_FILTERS]):
# output sizes only checked if default res <= 448 * 448 to keep resource down
input_size = tuple([min(x, MAX_FWD_OUT_SIZE) for x in input_size])
input_tensor = torch.randn((batch_size, *input_size), device=torch_device)
# test forward_features (always unpooled)
outputs = model.forward_features(input_tensor)
assert outputs.shape[spatial_axis[0]] == pool_size[0], 'unpooled feature shape != config'
assert outputs.shape[spatial_axis[1]] == pool_size[1], 'unpooled feature shape != config'
if not isinstance(model, (timm.models.MobileNetV3, timm.models.GhostNet, timm.models.RepGhostNet, timm.models.VGG)):
assert outputs.shape[feat_axis] == model.num_features
# test forward after deleting the classifier, output should be poooled, size(-1) == model.num_features
model.reset_classifier(0)
model.to(torch_device)
outputs = model.forward(input_tensor)
assert len(outputs.shape) == 2
assert outputs.shape[1] == model.num_features
# test model forward without pooling and classifier
model.reset_classifier(0, '') # reset classifier and set global pooling to pass-through
model.to(torch_device)
outputs = model.forward(input_tensor)
assert len(outputs.shape) == 4
if not isinstance(model, (timm.models.MobileNetV3, timm.models.GhostNet, timm.models.RepGhostNet, timm.models.VGG)):
# mobilenetv3/ghostnet/repghostnet/vgg forward_features vs removed pooling differ due to location or lack of GAP
assert outputs.shape[spatial_axis[0]] == pool_size[0] and outputs.shape[spatial_axis[1]] == pool_size[1]
if 'pruned' not in model_name: # FIXME better pruned model handling
# test classifier + global pool deletion via __init__
model = create_model(model_name, pretrained=False, num_classes=0, global_pool='').eval()
model.to(torch_device)
outputs = model.forward(input_tensor)
assert len(outputs.shape) == 4
if not isinstance(model, (timm.models.MobileNetV3, timm.models.GhostNet, timm.models.RepGhostNet, timm.models.VGG)):
assert outputs.shape[spatial_axis[0]] == pool_size[0] and outputs.shape[spatial_axis[1]] == pool_size[1]
# check classifier name matches default_cfg
if cfg.get('num_classes', None):
classifier = cfg['classifier']
if not isinstance(classifier, (tuple, list)):
classifier = classifier,
for c in classifier:
assert c + ".weight" in state_dict.keys(), f'{c} not in model params'
# check first conv(s) names match default_cfg
first_conv = cfg['first_conv']
if isinstance(first_conv, str):
first_conv = (first_conv,)
assert isinstance(first_conv, (tuple, list))
for fc in first_conv:
assert fc + ".weight" in state_dict.keys(), f'{fc} not in model params'
@pytest.mark.cfg
@pytest.mark.timeout(timeout300)
@pytest.mark.parametrize('model_name', list_models(filter=NON_STD_FILTERS, exclude_filters=NON_STD_EXCLUDE_FILTERS, include_tags=True))
@pytest.mark.parametrize('batch_size', [1])
def test_model_default_cfgs_non_std(model_name, batch_size):
"""Run a single forward pass with each model"""
model = create_model(model_name, pretrained=False)
model.eval()
model.to(torch_device)
state_dict = model.state_dict()
cfg = model.default_cfg
input_size = _get_input_size(model=model)
if max(input_size) > 320: # FIXME const
pytest.skip("Fixed input size model > limit.")
input_tensor = torch.randn((batch_size, *input_size), device=torch_device)
feat_dim = getattr(model, 'feature_dim', None)
outputs = model.forward_features(input_tensor)
if isinstance(outputs, (tuple, list)):
# cannot currently verify multi-tensor output.
pass
else:
if feat_dim is None:
feat_dim = -1 if outputs.ndim == 3 else 1
assert outputs.shape[feat_dim] == model.num_features
# test forward after deleting the classifier, output should be poooled, size(-1) == model.num_features
model.reset_classifier(0)
model.to(torch_device)
outputs = model.forward(input_tensor)
if isinstance(outputs, (tuple, list)):
outputs = outputs[0]
if feat_dim is None:
feat_dim = -1 if outputs.ndim == 3 else 1
assert outputs.shape[feat_dim] == model.num_features, 'pooled num_features != config'
model = create_model(model_name, pretrained=False, num_classes=0).eval()
model.to(torch_device)
outputs = model.forward(input_tensor)
if isinstance(outputs, (tuple, list)):
outputs = outputs[0]
if feat_dim is None:
feat_dim = -1 if outputs.ndim == 3 else 1
assert outputs.shape[feat_dim] == model.num_features
# check classifier name matches default_cfg
if cfg.get('num_classes', None):
classifier = cfg['classifier']
if not isinstance(classifier, (tuple, list)):
classifier = classifier,
for c in classifier:
assert c + ".weight" in state_dict.keys(), f'{c} not in model params'
# check first conv(s) names match default_cfg
first_conv = cfg['first_conv']
if isinstance(first_conv, str):
first_conv = (first_conv,)
assert isinstance(first_conv, (tuple, list))
for fc in first_conv:
assert fc + ".weight" in state_dict.keys(), f'{fc} not in model params'
if 'GITHUB_ACTIONS' not in os.environ:
@pytest.mark.timeout(240)
@pytest.mark.parametrize('model_name', list_models(pretrained=True))
@pytest.mark.parametrize('batch_size', [1])
def test_model_load_pretrained(model_name, batch_size):
"""Create that pretrained weights load, verify support for in_chans != 3 while doing so."""
in_chans = 3 if 'pruned' in model_name else 1 # pruning not currently supported with in_chans change
create_model(model_name, pretrained=True, in_chans=in_chans, num_classes=5)
create_model(model_name, pretrained=True, in_chans=in_chans, num_classes=0)
@pytest.mark.timeout(240)
@pytest.mark.parametrize('model_name', list_models(pretrained=True, exclude_filters=NON_STD_FILTERS))
@pytest.mark.parametrize('batch_size', [1])
def test_model_features_pretrained(model_name, batch_size):
"""Create that pretrained weights load when features_only==True."""
create_model(model_name, pretrained=True, features_only=True)
@pytest.mark.torchscript
@pytest.mark.timeout(timeout120)
@pytest.mark.parametrize(
'model_name', list_models(exclude_filters=EXCLUDE_FILTERS + EXCLUDE_JIT_FILTERS, name_matches_cfg=True))
@pytest.mark.parametrize('batch_size', [1])
def test_model_forward_torchscript(model_name, batch_size):
"""Run a single forward pass with each model"""
input_size = _get_input_size(model_name=model_name, target=TARGET_JIT_SIZE)
if max(input_size) > MAX_JIT_SIZE:
pytest.skip("Fixed input size model > limit.")
with set_scriptable(True):
model = create_model(model_name, pretrained=False)
model.eval()
model = torch.jit.script(model)
model.to(torch_device)
outputs = model(torch.randn((batch_size, *input_size)))
assert outputs.shape[0] == batch_size
assert not torch.isnan(outputs).any(), 'Output included NaNs'
EXCLUDE_FEAT_FILTERS = [
'*pruned*', # hopefully fix at some point
] + NON_STD_FILTERS
if 'GITHUB_ACTIONS' in os.environ: # and 'Linux' in platform.system():
# GitHub Linux runner is slower and hits memory limits sooner than MacOS, exclude bigger models
EXCLUDE_FEAT_FILTERS += ['*resnext101_32x32d', '*resnext101_32x16d']
@pytest.mark.features
@pytest.mark.timeout(120)
@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FEAT_FILTERS))
@pytest.mark.parametrize('batch_size', [1])
def test_model_forward_features(model_name, batch_size):
"""Run a single forward pass with each model in feature extraction mode"""
model = create_model(model_name, pretrained=False, features_only=True)
model.eval()
expected_channels = model.feature_info.channels()
expected_reduction = model.feature_info.reduction()
assert len(expected_channels) >= 3 # all models here should have at least 3 default feat levels
input_size = _get_input_size(model=model, target=TARGET_FFEAT_SIZE)
if max(input_size) > MAX_FFEAT_SIZE:
pytest.skip("Fixed input size model > limit.")
output_fmt = getattr(model, 'output_fmt', 'NCHW')
feat_axis = get_channel_dim(output_fmt)
spatial_axis = get_spatial_dim(output_fmt)
import math
outputs = model(torch.randn((batch_size, *input_size)))
assert len(expected_channels) == len(outputs)
spatial_size = input_size[-2:]
for e, r, o in zip(expected_channels, expected_reduction, outputs):
assert e == o.shape[feat_axis]
assert o.shape[spatial_axis[0]] <= math.ceil(spatial_size[0] / r) + 1
assert o.shape[spatial_axis[1]] <= math.ceil(spatial_size[1] / r) + 1
assert o.shape[0] == batch_size
assert not torch.isnan(o).any()
@pytest.mark.features
@pytest.mark.timeout(120)
@pytest.mark.parametrize('model_name', list_models(FEAT_INTER_FILTERS, exclude_filters=EXCLUDE_FILTERS))
@pytest.mark.parametrize('batch_size', [1])
def test_model_forward_intermediates_features(model_name, batch_size):
"""Run a single forward pass with each model in feature extraction mode"""
model = create_model(model_name, pretrained=False, features_only=True)
model.eval()
print(model.feature_info.out_indices)
expected_channels = model.feature_info.channels()
expected_reduction = model.feature_info.reduction()
input_size = _get_input_size(model=model, target=TARGET_FFEAT_SIZE)
if max(input_size) > MAX_FFEAT_SIZE:
pytest.skip("Fixed input size model > limit.")
output_fmt = getattr(model, 'output_fmt', 'NCHW')
feat_axis = get_channel_dim(output_fmt)
spatial_axis = get_spatial_dim(output_fmt)
import math
outputs = model(torch.randn((batch_size, *input_size)))
assert len(expected_channels) == len(outputs)
spatial_size = input_size[-2:]
for e, r, o in zip(expected_channels, expected_reduction, outputs):
print(o.shape)
assert e == o.shape[feat_axis]
assert o.shape[spatial_axis[0]] <= math.ceil(spatial_size[0] / r) + 1
assert o.shape[spatial_axis[1]] <= math.ceil(spatial_size[1] / r) + 1
assert o.shape[0] == batch_size
assert not torch.isnan(o).any()
@pytest.mark.features
@pytest.mark.timeout(120)
@pytest.mark.parametrize('model_name', list_models(FEAT_INTER_FILTERS, exclude_filters=EXCLUDE_FILTERS))
@pytest.mark.parametrize('batch_size', [1])
def test_model_forward_intermediates(model_name, batch_size):
"""Run a single forward pass with each model in feature extraction mode"""
model = create_model(model_name, pretrained=False)
model.eval()
feature_info = timm.models.FeatureInfo(model.feature_info, len(model.feature_info))
expected_channels = feature_info.channels()
expected_reduction = feature_info.reduction()
assert len(expected_channels) >= 4 # all models here should have at least 4 feature levels by default, some 5 or 6
input_size = _get_input_size(model=model, target=TARGET_FFEAT_SIZE)
if max(input_size) > MAX_FFEAT_SIZE:
pytest.skip("Fixed input size model > limit.")
output_fmt = getattr(model, 'output_fmt', 'NCHW')
feat_axis = get_channel_dim(output_fmt)
spatial_axis = get_spatial_dim(output_fmt)
import math
output, intermediates = model.forward_intermediates(
torch.randn((batch_size, *input_size)),
)
assert len(expected_channels) == len(intermediates)
spatial_size = input_size[-2:]
for e, r, o in zip(expected_channels, expected_reduction, intermediates):
assert e == o.shape[feat_axis]
assert o.shape[spatial_axis[0]] <= math.ceil(spatial_size[0] / r) + 1
assert o.shape[spatial_axis[1]] <= math.ceil(spatial_size[1] / r) + 1
assert o.shape[0] == batch_size
assert not torch.isnan(o).any()
def _create_fx_model(model, train=False):
# This block of code does a bit of juggling to handle any case where there are multiple outputs in train mode
# So we trace once and look at the graph, and get the indices of the nodes that lead into the original fx output
# node. Then we use those indices to select from train_nodes returned by torchvision get_graph_node_names
tracer_kwargs = dict(
leaf_modules=get_notrace_modules(),
autowrap_functions=get_notrace_functions(),
#enable_cpatching=True,
param_shapes_constant=True
)
train_nodes, eval_nodes = get_graph_node_names(model, tracer_kwargs=tracer_kwargs)
eval_return_nodes = [eval_nodes[-1]]
train_return_nodes = [train_nodes[-1]]
if train:
tracer = NodePathTracer(**tracer_kwargs)
graph = tracer.trace(model)
graph_nodes = list(reversed(graph.nodes))
output_node_names = [n.name for n in graph_nodes[0]._input_nodes.keys()]
graph_node_names = [n.name for n in graph_nodes]
output_node_indices = [-graph_node_names.index(node_name) for node_name in output_node_names]
train_return_nodes = [train_nodes[ix] for ix in output_node_indices]
fx_model = create_feature_extractor(
model,
train_return_nodes=train_return_nodes,
eval_return_nodes=eval_return_nodes,
tracer_kwargs=tracer_kwargs,
)
return fx_model
EXCLUDE_FX_FILTERS = ['vit_gi*']
# not enough memory to run fx on more models than other tests
if 'GITHUB_ACTIONS' in os.environ:
EXCLUDE_FX_FILTERS += [
'beit_large*',
'mixer_l*',
'*nfnet_f2*',
'*resnext101_32x32d',
'resnetv2_152x2*',
'resmlp_big*',
'resnetrs270',
'swin_large*',
'vgg*',
'vit_large*',
'vit_base_patch8*',
'xcit_large*',
]
@pytest.mark.fxforward
@pytest.mark.timeout(120)
@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FX_FILTERS))
@pytest.mark.parametrize('batch_size', [1])
def test_model_forward_fx(model_name, batch_size):
"""
Symbolically trace each model and run single forward pass through the resulting GraphModule
Also check that the output of a forward pass through the GraphModule is the same as that from the original Module
"""
if not has_fx_feature_extraction:
pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.")
model = create_model(model_name, pretrained=False)
model.eval()
input_size = _get_input_size(model=model, target=TARGET_FWD_FX_SIZE)
if max(input_size) > MAX_FWD_FX_SIZE:
pytest.skip("Fixed input size model > limit.")
with torch.no_grad():
inputs = torch.randn((batch_size, *input_size))
outputs = model(inputs)
if isinstance(outputs, tuple):
outputs = torch.cat(outputs)
model = _create_fx_model(model)
fx_outputs = tuple(model(inputs).values())
if isinstance(fx_outputs, tuple):
fx_outputs = torch.cat(fx_outputs)
assert torch.all(fx_outputs == outputs)
assert outputs.shape[0] == batch_size
assert not torch.isnan(outputs).any(), 'Output included NaNs'
@pytest.mark.fxbackward
@pytest.mark.timeout(120)
@pytest.mark.parametrize('model_name', list_models(
exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FX_FILTERS, name_matches_cfg=True))
@pytest.mark.parametrize('batch_size', [2])
def test_model_backward_fx(model_name, batch_size):
"""Symbolically trace each model and run single backward pass through the resulting GraphModule"""
if not has_fx_feature_extraction:
pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.")
input_size = _get_input_size(model_name=model_name, target=TARGET_BWD_FX_SIZE)
if max(input_size) > MAX_BWD_FX_SIZE:
pytest.skip("Fixed input size model > limit.")
model = create_model(model_name, pretrained=False, num_classes=42)
model.train()
num_params = sum([x.numel() for x in model.parameters()])
if 'GITHUB_ACTIONS' in os.environ and num_params > 100e6:
pytest.skip("Skipping FX backward test on model with more than 100M params.")
model = _create_fx_model(model, train=True)
outputs = tuple(model(torch.randn((batch_size, *input_size))).values())
if isinstance(outputs, tuple):
outputs = torch.cat(outputs)
outputs.mean().backward()
for n, x in model.named_parameters():
assert x.grad is not None, f'No gradient for {n}'
num_grad = sum([x.grad.numel() for x in model.parameters() if x.grad is not None])
assert outputs.shape[-1] == 42
assert num_params == num_grad, 'Some parameters are missing gradients'
assert not torch.isnan(outputs).any(), 'Output included NaNs'
if 'GITHUB_ACTIONS' not in os.environ:
# FIXME this test is causing GitHub actions to run out of RAM and abruptly kill the test process
# reason: model is scripted after fx tracing, but beit has torch.jit.is_scripting() control flow
EXCLUDE_FX_JIT_FILTERS = [
'deit_*_distilled_patch16_224',
'levit*',
'pit_*_distilled_224',
] + EXCLUDE_FX_FILTERS
@pytest.mark.timeout(120)
@pytest.mark.parametrize(
'model_name', list_models(
exclude_filters=EXCLUDE_FILTERS + EXCLUDE_JIT_FILTERS + EXCLUDE_FX_JIT_FILTERS, name_matches_cfg=True))
@pytest.mark.parametrize('batch_size', [1])
def test_model_forward_fx_torchscript(model_name, batch_size):
"""Symbolically trace each model, script it, and run single forward pass"""
if not has_fx_feature_extraction:
pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.")
input_size = _get_input_size(model_name=model_name, target=TARGET_JIT_SIZE)
if max(input_size) > MAX_JIT_SIZE:
pytest.skip("Fixed input size model > limit.")
with set_scriptable(True):
model = create_model(model_name, pretrained=False)
model.eval()
model = torch.jit.script(_create_fx_model(model))
with torch.no_grad():
outputs = tuple(model(torch.randn((batch_size, *input_size))).values())
if isinstance(outputs, tuple):
outputs = torch.cat(outputs)
assert outputs.shape[0] == batch_size
assert not torch.isnan(outputs).any(), 'Output included NaNs'