|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
class AsymmetricLossMultiLabel(nn.Module): |
|
def __init__(self, gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-8, disable_torch_grad_focal_loss=False): |
|
super(AsymmetricLossMultiLabel, self).__init__() |
|
|
|
self.gamma_neg = gamma_neg |
|
self.gamma_pos = gamma_pos |
|
self.clip = clip |
|
self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss |
|
self.eps = eps |
|
|
|
def forward(self, x, y): |
|
"""" |
|
Parameters |
|
---------- |
|
x: input logits |
|
y: targets (multi-label binarized vector) |
|
""" |
|
|
|
|
|
x_sigmoid = torch.sigmoid(x) |
|
xs_pos = x_sigmoid |
|
xs_neg = 1 - x_sigmoid |
|
|
|
|
|
if self.clip is not None and self.clip > 0: |
|
xs_neg = (xs_neg + self.clip).clamp(max=1) |
|
|
|
|
|
los_pos = y * torch.log(xs_pos.clamp(min=self.eps)) |
|
los_neg = (1 - y) * torch.log(xs_neg.clamp(min=self.eps)) |
|
loss = los_pos + los_neg |
|
|
|
|
|
if self.gamma_neg > 0 or self.gamma_pos > 0: |
|
if self.disable_torch_grad_focal_loss: |
|
torch.set_grad_enabled(False) |
|
pt0 = xs_pos * y |
|
pt1 = xs_neg * (1 - y) |
|
pt = pt0 + pt1 |
|
one_sided_gamma = self.gamma_pos * y + self.gamma_neg * (1 - y) |
|
one_sided_w = torch.pow(1 - pt, one_sided_gamma) |
|
if self.disable_torch_grad_focal_loss: |
|
torch.set_grad_enabled(True) |
|
loss *= one_sided_w |
|
|
|
return -loss.sum() |
|
|
|
|
|
class AsymmetricLossSingleLabel(nn.Module): |
|
def __init__(self, gamma_pos=1, gamma_neg=4, eps: float = 0.1, reduction='mean'): |
|
super(AsymmetricLossSingleLabel, self).__init__() |
|
|
|
self.eps = eps |
|
self.logsoftmax = nn.LogSoftmax(dim=-1) |
|
self.targets_classes = [] |
|
self.gamma_pos = gamma_pos |
|
self.gamma_neg = gamma_neg |
|
self.reduction = reduction |
|
|
|
def forward(self, inputs, target, reduction=None): |
|
"""" |
|
Parameters |
|
---------- |
|
x: input logits |
|
y: targets (1-hot vector) |
|
""" |
|
|
|
num_classes = inputs.size()[-1] |
|
log_preds = self.logsoftmax(inputs) |
|
self.targets_classes = torch.zeros_like(inputs).scatter_(1, target.long().unsqueeze(1), 1) |
|
|
|
|
|
targets = self.targets_classes |
|
anti_targets = 1 - targets |
|
xs_pos = torch.exp(log_preds) |
|
xs_neg = 1 - xs_pos |
|
xs_pos = xs_pos * targets |
|
xs_neg = xs_neg * anti_targets |
|
asymmetric_w = torch.pow(1 - xs_pos - xs_neg, |
|
self.gamma_pos * targets + self.gamma_neg * anti_targets) |
|
log_preds = log_preds * asymmetric_w |
|
|
|
if self.eps > 0: |
|
self.targets_classes = self.targets_classes.mul(1 - self.eps).add(self.eps / num_classes) |
|
|
|
|
|
loss = - self.targets_classes.mul(log_preds) |
|
|
|
loss = loss.sum(dim=-1) |
|
if self.reduction == 'mean': |
|
loss = loss.mean() |
|
|
|
return loss |
|
|