|
""" BEiT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) |
|
|
|
Model from official source: https://github.com/microsoft/unilm/tree/master/beit |
|
|
|
@inproceedings{beit, |
|
title={{BEiT}: {BERT} Pre-Training of Image Transformers}, |
|
author={Hangbo Bao and Li Dong and Songhao Piao and Furu Wei}, |
|
booktitle={International Conference on Learning Representations}, |
|
year={2022}, |
|
url={https://openreview.net/forum?id=p-BhZSz59o4} |
|
} |
|
|
|
BEiT-v2 from https://github.com/microsoft/unilm/tree/master/beit2 |
|
|
|
@article{beitv2, |
|
title={{BEiT v2}: Masked Image Modeling with Vector-Quantized Visual Tokenizers}, |
|
author={Zhiliang Peng and Li Dong and Hangbo Bao and Qixiang Ye and Furu Wei}, |
|
year={2022}, |
|
eprint={2208.06366}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
|
|
At this point only the 1k fine-tuned classification weights and model configs have been added, |
|
see original source above for pre-training models and procedure. |
|
|
|
Modifications by / Copyright 2021 Ross Wightman, original copyrights below |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import Callable, List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.layers import PatchEmbed, Mlp, SwiGLU, LayerNorm, DropPath, trunc_normal_, use_fused_attn |
|
from timm.layers import resample_patch_embed, resample_abs_pos_embed, resize_rel_pos_bias_table, ndgrid |
|
|
|
|
|
from ._builder import build_model_with_cfg |
|
from ._features import feature_take_indices |
|
from ._registry import generate_default_cfgs, register_model |
|
|
|
__all__ = ['Beit'] |
|
|
|
|
|
def gen_relative_position_index(window_size: Tuple[int, int]) -> torch.Tensor: |
|
num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 |
|
|
|
|
|
window_area = window_size[0] * window_size[1] |
|
coords = torch.stack(ndgrid(torch.arange(window_size[0]), torch.arange(window_size[1]))) |
|
coords_flatten = torch.flatten(coords, 1) |
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() |
|
relative_coords[:, :, 0] += window_size[0] - 1 |
|
relative_coords[:, :, 1] += window_size[1] - 1 |
|
relative_coords[:, :, 0] *= 2 * window_size[1] - 1 |
|
relative_position_index = torch.zeros(size=(window_area + 1,) * 2, dtype=relative_coords.dtype) |
|
relative_position_index[1:, 1:] = relative_coords.sum(-1) |
|
relative_position_index[0, 0:] = num_relative_distance - 3 |
|
relative_position_index[0:, 0] = num_relative_distance - 2 |
|
relative_position_index[0, 0] = num_relative_distance - 1 |
|
return relative_position_index |
|
|
|
|
|
class Attention(nn.Module): |
|
fused_attn: torch.jit.Final[bool] |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int = 8, |
|
qkv_bias: bool = False, |
|
attn_drop: float = 0., |
|
proj_drop: float = 0., |
|
window_size: Optional[Tuple[int, int]] = None, |
|
attn_head_dim: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
if attn_head_dim is not None: |
|
head_dim = attn_head_dim |
|
all_head_dim = head_dim * self.num_heads |
|
self.scale = head_dim ** -0.5 |
|
self.fused_attn = use_fused_attn() |
|
|
|
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) |
|
if qkv_bias: |
|
self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
self.register_buffer('k_bias', torch.zeros(all_head_dim), persistent=False) |
|
self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
else: |
|
self.q_bias = None |
|
self.k_bias = None |
|
self.v_bias = None |
|
|
|
if window_size: |
|
self.window_size = window_size |
|
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 |
|
self.relative_position_bias_table = nn.Parameter( |
|
torch.zeros(self.num_relative_distance, num_heads)) |
|
self.register_buffer("relative_position_index", gen_relative_position_index(window_size), persistent=False) |
|
else: |
|
self.window_size = None |
|
self.relative_position_bias_table = None |
|
self.relative_position_index = None |
|
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(all_head_dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def _get_rel_pos_bias(self): |
|
relative_position_bias = self.relative_position_bias_table[ |
|
self.relative_position_index.view(-1)].view( |
|
self.window_size[0] * self.window_size[1] + 1, |
|
self.window_size[0] * self.window_size[1] + 1, -1) |
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() |
|
return relative_position_bias.unsqueeze(0) |
|
|
|
def forward(self, x, shared_rel_pos_bias: Optional[torch.Tensor] = None): |
|
B, N, C = x.shape |
|
|
|
qkv_bias = torch.cat((self.q_bias, self.k_bias, self.v_bias)) if self.q_bias is not None else None |
|
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) |
|
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv.unbind(0) |
|
|
|
if self.fused_attn: |
|
rel_pos_bias = None |
|
if self.relative_position_bias_table is not None: |
|
rel_pos_bias = self._get_rel_pos_bias() |
|
if shared_rel_pos_bias is not None: |
|
rel_pos_bias = rel_pos_bias + shared_rel_pos_bias |
|
elif shared_rel_pos_bias is not None: |
|
rel_pos_bias = shared_rel_pos_bias |
|
|
|
x = F.scaled_dot_product_attention( |
|
q, k, v, |
|
attn_mask=rel_pos_bias, |
|
dropout_p=self.attn_drop.p if self.training else 0., |
|
) |
|
else: |
|
q = q * self.scale |
|
attn = (q @ k.transpose(-2, -1)) |
|
|
|
if self.relative_position_bias_table is not None: |
|
attn = attn + self._get_rel_pos_bias() |
|
if shared_rel_pos_bias is not None: |
|
attn = attn + shared_rel_pos_bias |
|
|
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
x = attn @ v |
|
|
|
x = x.transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int, |
|
qkv_bias: bool = False, |
|
mlp_ratio: float = 4., |
|
scale_mlp: bool = False, |
|
swiglu_mlp: bool = False, |
|
proj_drop: float = 0., |
|
attn_drop: float = 0., |
|
drop_path: float = 0., |
|
init_values: Optional[float] = None, |
|
act_layer: Callable = nn.GELU, |
|
norm_layer: Callable = LayerNorm, |
|
window_size: Optional[Tuple[int, int]] = None, |
|
attn_head_dim: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
attn_drop=attn_drop, |
|
proj_drop=proj_drop, |
|
window_size=window_size, |
|
attn_head_dim=attn_head_dim, |
|
) |
|
|
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
self.norm2 = norm_layer(dim) |
|
if swiglu_mlp: |
|
self.mlp = SwiGLU( |
|
in_features=dim, |
|
hidden_features=int(dim * mlp_ratio), |
|
norm_layer=norm_layer if scale_mlp else None, |
|
drop=proj_drop, |
|
) |
|
else: |
|
self.mlp = Mlp( |
|
in_features=dim, |
|
hidden_features=int(dim * mlp_ratio), |
|
act_layer=act_layer, |
|
norm_layer=norm_layer if scale_mlp else None, |
|
drop=proj_drop, |
|
) |
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
if init_values: |
|
self.gamma_1 = nn.Parameter(init_values * torch.ones(dim)) |
|
self.gamma_2 = nn.Parameter(init_values * torch.ones(dim)) |
|
else: |
|
self.gamma_1, self.gamma_2 = None, None |
|
|
|
def forward(self, x, shared_rel_pos_bias: Optional[torch.Tensor] = None): |
|
if self.gamma_1 is None: |
|
x = x + self.drop_path1(self.attn(self.norm1(x), shared_rel_pos_bias=shared_rel_pos_bias)) |
|
x = x + self.drop_path2(self.mlp(self.norm2(x))) |
|
else: |
|
x = x + self.drop_path1(self.gamma_1 * self.attn(self.norm1(x), shared_rel_pos_bias=shared_rel_pos_bias)) |
|
x = x + self.drop_path2(self.gamma_2 * self.mlp(self.norm2(x))) |
|
return x |
|
|
|
|
|
class RelativePositionBias(nn.Module): |
|
|
|
def __init__(self, window_size, num_heads): |
|
super().__init__() |
|
self.window_size = window_size |
|
self.window_area = window_size[0] * window_size[1] |
|
num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 |
|
self.relative_position_bias_table = nn.Parameter(torch.zeros(num_relative_distance, num_heads)) |
|
|
|
self.register_buffer("relative_position_index", gen_relative_position_index(window_size)) |
|
|
|
def forward(self): |
|
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( |
|
self.window_area + 1, self.window_area + 1, -1) |
|
return relative_position_bias.permute(2, 0, 1).contiguous() |
|
|
|
|
|
class Beit(nn.Module): |
|
""" Vision Transformer with support for patch or hybrid CNN input stage |
|
""" |
|
|
|
def __init__( |
|
self, |
|
img_size: Union[int, Tuple[int, int]] = 224, |
|
patch_size: Union[int, Tuple[int, int]] = 16, |
|
in_chans: int = 3, |
|
num_classes: int = 1000, |
|
global_pool: str = 'avg', |
|
embed_dim: int = 768, |
|
depth: int = 12, |
|
num_heads: int = 12, |
|
qkv_bias: bool = True, |
|
mlp_ratio: float = 4., |
|
swiglu_mlp: bool = False, |
|
scale_mlp: bool = False, |
|
drop_rate: float = 0., |
|
pos_drop_rate: float = 0., |
|
proj_drop_rate: float = 0., |
|
attn_drop_rate: float = 0., |
|
drop_path_rate: float = 0., |
|
norm_layer: Callable = LayerNorm, |
|
init_values: Optional[float] = None, |
|
use_abs_pos_emb: bool = True, |
|
use_rel_pos_bias: bool = False, |
|
use_shared_rel_pos_bias: bool = False, |
|
head_init_scale: float = 0.001, |
|
): |
|
super().__init__() |
|
self.num_classes = num_classes |
|
self.global_pool = global_pool |
|
self.num_features = self.embed_dim = embed_dim |
|
self.num_prefix_tokens = 1 |
|
self.grad_checkpointing = False |
|
|
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
in_chans=in_chans, |
|
embed_dim=embed_dim, |
|
) |
|
num_patches = self.patch_embed.num_patches |
|
r = self.patch_embed.feat_ratio() if hasattr(self.patch_embed, 'feat_ratio') else patch_size |
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) |
|
|
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) if use_abs_pos_emb else None |
|
self.pos_drop = nn.Dropout(p=pos_drop_rate) |
|
|
|
if use_shared_rel_pos_bias: |
|
self.rel_pos_bias = RelativePositionBias( |
|
window_size=self.patch_embed.grid_size, |
|
num_heads=num_heads, |
|
) |
|
else: |
|
self.rel_pos_bias = None |
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] |
|
self.blocks = nn.ModuleList([ |
|
Block( |
|
dim=embed_dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
mlp_ratio=mlp_ratio, |
|
scale_mlp=scale_mlp, |
|
swiglu_mlp=swiglu_mlp, |
|
proj_drop=proj_drop_rate, |
|
attn_drop=attn_drop_rate, |
|
drop_path=dpr[i], |
|
norm_layer=norm_layer, |
|
init_values=init_values, |
|
window_size=self.patch_embed.grid_size if use_rel_pos_bias else None, |
|
) |
|
for i in range(depth)]) |
|
self.feature_info = [ |
|
dict(module=f'blocks.{i}', num_chs=embed_dim, reduction=r) for i in range(depth)] |
|
|
|
use_fc_norm = self.global_pool == 'avg' |
|
self.norm = nn.Identity() if use_fc_norm else norm_layer(embed_dim) |
|
self.fc_norm = norm_layer(embed_dim) if use_fc_norm else nn.Identity() |
|
self.head_drop = nn.Dropout(drop_rate) |
|
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
self.apply(self._init_weights) |
|
if self.pos_embed is not None: |
|
trunc_normal_(self.pos_embed, std=.02) |
|
trunc_normal_(self.cls_token, std=.02) |
|
|
|
self.fix_init_weight() |
|
if isinstance(self.head, nn.Linear): |
|
trunc_normal_(self.head.weight, std=.02) |
|
self.head.weight.data.mul_(head_init_scale) |
|
self.head.bias.data.mul_(head_init_scale) |
|
|
|
def fix_init_weight(self): |
|
def rescale(param, layer_id): |
|
param.div_(math.sqrt(2.0 * layer_id)) |
|
|
|
for layer_id, layer in enumerate(self.blocks): |
|
rescale(layer.attn.proj.weight.data, layer_id + 1) |
|
rescale(layer.mlp.fc2.weight.data, layer_id + 1) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
nwd = {'pos_embed', 'cls_token'} |
|
for n, _ in self.named_parameters(): |
|
if 'relative_position_bias_table' in n: |
|
nwd.add(n) |
|
return nwd |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.grad_checkpointing = enable |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
matcher = dict( |
|
stem=r'^cls_token|pos_embed|patch_embed|rel_pos_bias', |
|
blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))], |
|
) |
|
return matcher |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self): |
|
return self.head |
|
|
|
def reset_classifier(self, num_classes, global_pool=None): |
|
self.num_classes = num_classes |
|
if global_pool is not None: |
|
self.global_pool = global_pool |
|
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
def forward_intermediates( |
|
self, |
|
x: torch.Tensor, |
|
indices: Optional[Union[int, List[int], Tuple[int]]] = None, |
|
return_prefix_tokens: bool = False, |
|
norm: bool = False, |
|
stop_early: bool = True, |
|
output_fmt: str = 'NCHW', |
|
intermediates_only: bool = False, |
|
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: |
|
""" Forward features that returns intermediates. |
|
|
|
Args: |
|
x: Input image tensor |
|
indices: Take last n blocks if an int, if is a sequence, select by matching indices |
|
return_prefix_tokens: Return both prefix and spatial intermediate tokens |
|
norm: Apply norm layer to all intermediates |
|
stop_early: Stop iterating over blocks when last desired intermediate hit |
|
output_fmt: Shape of intermediate feature outputs |
|
intermediates_only: Only return intermediate features |
|
Returns: |
|
|
|
""" |
|
assert output_fmt in ('NCHW', 'NLC'), 'Output format for ViT features must be one of NCHW or NLC.' |
|
reshape = output_fmt == 'NCHW' |
|
intermediates = [] |
|
take_indices, max_index = feature_take_indices(len(self.blocks), indices) |
|
|
|
|
|
B, _, height, width = x.shape |
|
x = self.patch_embed(x) |
|
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) |
|
if self.pos_embed is not None: |
|
x = x + self.pos_embed |
|
x = self.pos_drop(x) |
|
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None |
|
if torch.jit.is_scripting() or not stop_early: |
|
blocks = self.blocks |
|
else: |
|
blocks = self.blocks[:max_index + 1] |
|
for i, blk in enumerate(blocks): |
|
x = blk(x, shared_rel_pos_bias=rel_pos_bias) |
|
if i in take_indices: |
|
|
|
intermediates.append(self.norm(x) if norm else x) |
|
|
|
|
|
if self.num_prefix_tokens: |
|
|
|
prefix_tokens = [y[:, 0:self.num_prefix_tokens] for y in intermediates] |
|
intermediates = [y[:, self.num_prefix_tokens:] for y in intermediates] |
|
if reshape: |
|
|
|
H, W = self.patch_embed.dynamic_feat_size((height, width)) |
|
intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates] |
|
if not torch.jit.is_scripting() and return_prefix_tokens: |
|
|
|
intermediates = list(zip(intermediates, prefix_tokens)) |
|
|
|
if intermediates_only: |
|
return intermediates |
|
|
|
x = self.norm(x) |
|
|
|
return x, intermediates |
|
|
|
def prune_intermediate_layers( |
|
self, |
|
n: Union[int, List[int], Tuple[int]] = 1, |
|
prune_norm: bool = False, |
|
prune_head: bool = True, |
|
): |
|
""" Prune layers not required for specified intermediates. |
|
""" |
|
take_indices, max_index = feature_take_indices(len(self.blocks), n) |
|
self.blocks = self.blocks[:max_index + 1] |
|
if prune_norm: |
|
self.norm = nn.Identity() |
|
if prune_head: |
|
self.fc_norm = nn.Identity() |
|
self.head = nn.Identity() |
|
return take_indices |
|
|
|
def forward_features(self, x): |
|
x = self.patch_embed(x) |
|
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) |
|
if self.pos_embed is not None: |
|
x = x + self.pos_embed |
|
x = self.pos_drop(x) |
|
|
|
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None |
|
for blk in self.blocks: |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint(blk, x, shared_rel_pos_bias=rel_pos_bias) |
|
else: |
|
x = blk(x, shared_rel_pos_bias=rel_pos_bias) |
|
x = self.norm(x) |
|
return x |
|
|
|
def forward_head(self, x, pre_logits: bool = False): |
|
if self.global_pool: |
|
x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] |
|
x = self.fc_norm(x) |
|
x = self.head_drop(x) |
|
return x if pre_logits else self.head(x) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.forward_head(x) |
|
return x |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, |
|
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, |
|
'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), |
|
'first_conv': 'patch_embed.proj', 'classifier': 'head', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = generate_default_cfgs({ |
|
'beit_base_patch16_224.in22k_ft_in22k_in1k': _cfg( |
|
|
|
hf_hub_id='timm/'), |
|
'beit_base_patch16_384.in22k_ft_in22k_in1k': _cfg( |
|
|
|
hf_hub_id='timm/', |
|
input_size=(3, 384, 384), crop_pct=1.0, |
|
), |
|
'beit_base_patch16_224.in22k_ft_in22k': _cfg( |
|
|
|
hf_hub_id='timm/', |
|
num_classes=21841, |
|
), |
|
'beit_large_patch16_224.in22k_ft_in22k_in1k': _cfg( |
|
|
|
hf_hub_id='timm/'), |
|
'beit_large_patch16_384.in22k_ft_in22k_in1k': _cfg( |
|
|
|
hf_hub_id='timm/', |
|
input_size=(3, 384, 384), crop_pct=1.0, |
|
), |
|
'beit_large_patch16_512.in22k_ft_in22k_in1k': _cfg( |
|
|
|
hf_hub_id='timm/', |
|
input_size=(3, 512, 512), crop_pct=1.0, |
|
), |
|
'beit_large_patch16_224.in22k_ft_in22k': _cfg( |
|
|
|
hf_hub_id='timm/', |
|
num_classes=21841, |
|
), |
|
|
|
'beitv2_base_patch16_224.in1k_ft_in22k_in1k': _cfg( |
|
|
|
hf_hub_id='timm/', |
|
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD |
|
), |
|
'beitv2_base_patch16_224.in1k_ft_in1k': _cfg( |
|
|
|
hf_hub_id='timm/', |
|
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD |
|
), |
|
'beitv2_base_patch16_224.in1k_ft_in22k': _cfg( |
|
|
|
hf_hub_id='timm/', |
|
num_classes=21841, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD |
|
), |
|
'beitv2_large_patch16_224.in1k_ft_in22k_in1k': _cfg( |
|
|
|
hf_hub_id='timm/', |
|
crop_pct=0.95, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD |
|
), |
|
'beitv2_large_patch16_224.in1k_ft_in1k': _cfg( |
|
|
|
hf_hub_id='timm/', |
|
crop_pct=0.95, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD |
|
), |
|
'beitv2_large_patch16_224.in1k_ft_in22k': _cfg( |
|
|
|
hf_hub_id='timm/', |
|
num_classes=21841, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD |
|
), |
|
}) |
|
|
|
|
|
def _beit_checkpoint_filter_fn(state_dict, model, interpolation='bicubic', antialias=True): |
|
state_dict = state_dict.get('model', state_dict) |
|
state_dict = state_dict.get('module', state_dict) |
|
|
|
|
|
out_dict = {} |
|
for k, v in state_dict.items(): |
|
if 'relative_position_index' in k: |
|
continue |
|
if 'patch_embed.proj.weight' in k: |
|
O, I, H, W = model.patch_embed.proj.weight.shape |
|
if v.shape[-1] != W or v.shape[-2] != H: |
|
v = resample_patch_embed( |
|
v, |
|
(H, W), |
|
interpolation=interpolation, |
|
antialias=antialias, |
|
verbose=True, |
|
) |
|
elif k == 'pos_embed' and v.shape[1] != model.pos_embed.shape[1]: |
|
|
|
num_prefix_tokens = 1 |
|
v = resample_abs_pos_embed( |
|
v, |
|
new_size=model.patch_embed.grid_size, |
|
num_prefix_tokens=num_prefix_tokens, |
|
interpolation=interpolation, |
|
antialias=antialias, |
|
verbose=True, |
|
) |
|
elif k.endswith('relative_position_bias_table'): |
|
m = model.get_submodule(k[:-29]) |
|
if v.shape != m.relative_position_bias_table.shape or m.window_size[0] != m.window_size[1]: |
|
v = resize_rel_pos_bias_table( |
|
v, |
|
new_window_size=m.window_size, |
|
new_bias_shape=m.relative_position_bias_table.shape, |
|
) |
|
out_dict[k] = v |
|
return out_dict |
|
|
|
|
|
def _create_beit(variant, pretrained=False, **kwargs): |
|
out_indices = kwargs.pop('out_indices', 3) |
|
model = build_model_with_cfg( |
|
Beit, variant, pretrained, |
|
pretrained_filter_fn=_beit_checkpoint_filter_fn, |
|
feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), |
|
**kwargs, |
|
) |
|
return model |
|
|
|
|
|
@register_model |
|
def beit_base_patch16_224(pretrained=False, **kwargs) -> Beit: |
|
model_args = dict( |
|
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, |
|
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1) |
|
model = _create_beit('beit_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def beit_base_patch16_384(pretrained=False, **kwargs) -> Beit: |
|
model_args = dict( |
|
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, |
|
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1) |
|
model = _create_beit('beit_base_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def beit_large_patch16_224(pretrained=False, **kwargs) -> Beit: |
|
model_args = dict( |
|
patch_size=16, embed_dim=1024, depth=24, num_heads=16, |
|
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5) |
|
model = _create_beit('beit_large_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def beit_large_patch16_384(pretrained=False, **kwargs) -> Beit: |
|
model_args = dict( |
|
img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, |
|
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5) |
|
model = _create_beit('beit_large_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def beit_large_patch16_512(pretrained=False, **kwargs) -> Beit: |
|
model_args = dict( |
|
img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16, |
|
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5) |
|
model = _create_beit('beit_large_patch16_512', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def beitv2_base_patch16_224(pretrained=False, **kwargs) -> Beit: |
|
model_args = dict( |
|
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, |
|
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5) |
|
model = _create_beit('beitv2_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def beitv2_large_patch16_224(pretrained=False, **kwargs) -> Beit: |
|
model_args = dict( |
|
patch_size=16, embed_dim=1024, depth=24, num_heads=16, |
|
use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5) |
|
model = _create_beit('beitv2_large_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|